Normalized defining polynomial
\( x^{20} - 654 x^{18} + 182428 x^{16} - 28582758 x^{14} + 2783036051 x^{12} - 175645980387 x^{10} + 7257234585990 x^{8} - 193051166481831 x^{6} + 3145361149528271 x^{4} - 28079433439933088 x^{2} + 102561320445857296 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8088551234301552526733640713612755353856000000000000=2^{20}\cdot 5^{12}\cdot 257^{4}\cdot 431^{6}\cdot 1031^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $393.91$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 257, 431, 1031$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{431} a^{10} + \frac{208}{431} a^{8} + \frac{115}{431} a^{6} - \frac{131}{431} a^{4} + \frac{91}{431} a^{2}$, $\frac{1}{431} a^{11} + \frac{208}{431} a^{9} + \frac{115}{431} a^{7} - \frac{131}{431} a^{5} + \frac{91}{431} a^{3}$, $\frac{1}{185761} a^{12} + \frac{208}{185761} a^{10} - \frac{9798}{185761} a^{8} - \frac{62195}{185761} a^{6} + \frac{37588}{185761} a^{4} + \frac{93}{431} a^{2}$, $\frac{1}{185761} a^{13} + \frac{208}{185761} a^{11} - \frac{9798}{185761} a^{9} - \frac{62195}{185761} a^{7} + \frac{37588}{185761} a^{5} + \frac{93}{431} a^{3}$, $\frac{1}{240188973} a^{14} + \frac{213}{80062991} a^{12} - \frac{105911}{240188973} a^{10} - \frac{77103445}{240188973} a^{8} - \frac{3548332}{240188973} a^{6} - \frac{246779}{557283} a^{4} + \frac{463}{1293} a^{2} - \frac{1}{3}$, $\frac{1}{240188973} a^{15} + \frac{213}{80062991} a^{13} - \frac{105911}{240188973} a^{11} - \frac{77103445}{240188973} a^{9} - \frac{3548332}{240188973} a^{7} - \frac{246779}{557283} a^{5} + \frac{463}{1293} a^{3} - \frac{1}{3} a$, $\frac{1}{310564342089} a^{16} + \frac{208}{310564342089} a^{14} + \frac{175963}{310564342089} a^{12} + \frac{9384340}{34507149121} a^{10} + \frac{42899682928}{310564342089} a^{8} - \frac{8570773}{720566919} a^{6} + \frac{51473}{557283} a^{4} - \frac{1802}{3879} a^{2} - \frac{2}{9}$, $\frac{1}{621128684178} a^{17} + \frac{104}{310564342089} a^{15} - \frac{747943}{310564342089} a^{13} - \frac{14626974}{34507149121} a^{11} - \frac{251283882659}{621128684178} a^{9} - \frac{487883287}{1441133838} a^{7} + \frac{247996}{557283} a^{5} - \frac{2639}{7758} a^{3} + \frac{7}{18} a$, $\frac{1}{480435048672459474216341591494613496} a^{18} - \frac{184204589336149146853757}{240217524336229737108170795747306748} a^{16} + \frac{72668708384219717096743457}{120108762168114868554085397873653374} a^{14} + \frac{264350970498411311197502556977}{240217524336229737108170795747306748} a^{12} - \frac{140332984405624027703687539122941}{480435048672459474216341591494613496} a^{10} - \frac{354265718698514631109545131636945}{1114698488799209916975270513908616} a^{8} + \frac{600013711446917040506739426113}{1293153699303027745910986675068} a^{6} + \frac{1428214673351007588491310943}{6000713221823794644598546056} a^{4} + \frac{101356220443278416055097}{4640922832036964148954792} a^{2} - \frac{1198583711032608350029}{8075851795887988658274}$, $\frac{1}{960870097344918948432683182989226992} a^{19} - \frac{184204589336149146853757}{480435048672459474216341591494613496} a^{17} + \frac{72668708384219717096743457}{240217524336229737108170795747306748} a^{15} - \frac{1028802728804616434713484118091}{480435048672459474216341591494613496} a^{13} + \frac{436413565483526346972612517957387}{960870097344918948432683182989226992} a^{11} - \frac{872217280440235465858068634460585}{2229396977598419833950541027817232} a^{9} + \frac{84864315706565964526534081925}{2586307398606055491821973350136} a^{7} + \frac{4390824752968924451801811295}{12001426443647589289197092112} a^{5} - \frac{4561102216382720369321759}{9281845664073928297909584} a^{3} + \frac{6877268084855380308245}{16151703591775977316548} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 102519291655000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 7372800 |
| The 216 conjugacy class representatives for t20n1025 are not computed |
| Character table for t20n1025 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.10.1096992360765625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.8.0.1}{8} }$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | $16{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | $16{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | $16{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.8.0.1}{8} }$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 257 | Data not computed | ||||||
| 431 | Data not computed | ||||||
| 1031 | Data not computed | ||||||