Normalized defining polynomial
\( x^{20} - x^{19} - 39 x^{18} + 37 x^{17} + 566 x^{16} - 487 x^{15} - 4062 x^{14} + 3233 x^{13} + 16223 x^{12} - 12098 x^{11} - 37808 x^{10} + 26337 x^{9} + 51642 x^{8} - 32819 x^{7} - 40081 x^{6} + 21890 x^{5} + 16403 x^{4} - 6600 x^{3} - 3045 x^{2} + 528 x + 179 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(786954594434420875688580751953125=5^{10}\cdot 29^{5}\cdot 211^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $44.14$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 29, 211$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{467648490052607314380401} a^{19} + \frac{107230205104993676335069}{467648490052607314380401} a^{18} + \frac{214521439010218586808066}{467648490052607314380401} a^{17} - \frac{85045531640544319457090}{467648490052607314380401} a^{16} + \frac{196996065108692232128503}{467648490052607314380401} a^{15} - \frac{126733067828436866312126}{467648490052607314380401} a^{14} + \frac{32737005264634368038723}{467648490052607314380401} a^{13} + \frac{216124360363040423933355}{467648490052607314380401} a^{12} + \frac{81687966478725916326001}{467648490052607314380401} a^{11} - \frac{21860369584390847116186}{467648490052607314380401} a^{10} - \frac{186359606374416829751947}{467648490052607314380401} a^{9} - \frac{168203572456852768457792}{467648490052607314380401} a^{8} + \frac{130489328106152555206695}{467648490052607314380401} a^{7} + \frac{24451455517805085025236}{467648490052607314380401} a^{6} - \frac{47978653422912707167529}{467648490052607314380401} a^{5} + \frac{147040885504697388703628}{467648490052607314380401} a^{4} - \frac{117810906550182664216962}{467648490052607314380401} a^{3} - \frac{108363154805755442087673}{467648490052607314380401} a^{2} - \frac{189766542418341975482964}{467648490052607314380401} a - \frac{115895596655568137618276}{467648490052607314380401}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9457791448.16 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_5\times C_5:D_4$ (as 20T53):
| A solvable group of order 200 |
| The 65 conjugacy class representatives for $C_5\times C_5:D_4$ are not computed |
| Character table for $C_5\times C_5:D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.725.1, 10.10.6194123253125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | $20$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }^{2}$ | $20$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{10}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | $20$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $29$ | 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.10.5.2 | $x^{10} - 707281 x^{2} + 225622639$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 211 | Data not computed | ||||||