Normalized defining polynomial
\( x^{20} - 2 x^{19} - 42 x^{18} + 56 x^{17} + 689 x^{16} - 416 x^{15} - 5626 x^{14} - 38 x^{13} + 23428 x^{12} + 9162 x^{11} - 50258 x^{10} - 31240 x^{9} + 53513 x^{8} + 40496 x^{7} - 25550 x^{6} - 21178 x^{5} + 4637 x^{4} + 3704 x^{3} - 356 x^{2} - 128 x - 4 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(76689862179190073956224893714432=2^{20}\cdot 53^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $39.29$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{5}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{2} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{4} - \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{14} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{4} a^{15} - \frac{1}{2} a^{7} - \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{16} a^{16} - \frac{1}{8} a^{15} - \frac{1}{8} a^{11} + \frac{1}{8} a^{10} - \frac{1}{8} a^{9} - \frac{1}{4} a^{6} - \frac{3}{8} a^{5} - \frac{7}{16} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4}$, $\frac{1}{160} a^{17} - \frac{3}{160} a^{16} - \frac{3}{80} a^{15} - \frac{1}{8} a^{14} - \frac{9}{80} a^{12} - \frac{7}{40} a^{11} + \frac{9}{40} a^{10} + \frac{1}{80} a^{9} - \frac{1}{20} a^{8} + \frac{17}{40} a^{7} - \frac{29}{80} a^{6} - \frac{1}{160} a^{5} + \frac{59}{160} a^{4} - \frac{17}{40} a^{3} - \frac{1}{8} a^{2} + \frac{19}{40} a + \frac{13}{40}$, $\frac{1}{1600} a^{18} + \frac{1}{400} a^{17} + \frac{23}{1600} a^{16} + \frac{79}{800} a^{15} + \frac{9}{80} a^{14} - \frac{29}{800} a^{13} - \frac{97}{800} a^{12} - \frac{19}{80} a^{11} - \frac{3}{800} a^{10} + \frac{173}{800} a^{9} - \frac{7}{400} a^{8} - \frac{211}{800} a^{7} + \frac{233}{1600} a^{6} - \frac{13}{100} a^{5} + \frac{151}{320} a^{4} - \frac{9}{25} a^{3} + \frac{67}{200} a^{2} - \frac{87}{200} a - \frac{39}{400}$, $\frac{1}{415299758805872000} a^{19} + \frac{84913409488131}{415299758805872000} a^{18} + \frac{780252138062531}{415299758805872000} a^{17} + \frac{3946326466566779}{415299758805872000} a^{16} + \frac{23566209617446623}{207649879402936000} a^{15} - \frac{24015373384163999}{207649879402936000} a^{14} + \frac{74887188001691}{10382493970146800} a^{13} - \frac{10622414533905309}{207649879402936000} a^{12} + \frac{31231190957116567}{207649879402936000} a^{11} - \frac{11718393769377627}{51912469850734000} a^{10} + \frac{6090846383193857}{207649879402936000} a^{9} + \frac{20141771033752811}{207649879402936000} a^{8} + \frac{2137677736323937}{8836165080976000} a^{7} + \frac{188193706037095383}{415299758805872000} a^{6} + \frac{142958274561737339}{415299758805872000} a^{5} - \frac{64800521640265791}{415299758805872000} a^{4} + \frac{9221835250629523}{51912469850734000} a^{3} - \frac{3828728900928007}{12978117462683500} a^{2} + \frac{21545862857737063}{103824939701468000} a - \frac{43750782539926253}{103824939701468000}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 8458588550.38 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 5 conjugacy class representatives for $F_5$ |
| Character table for $F_5$ |
Intermediate fields
| \(\Q(\sqrt{53}) \), 4.4.2382032.1, 5.5.2382032.1 x5, 10.10.300726051798272.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 5 sibling: | 5.5.2382032.1 |
| Degree 10 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{10}$ | R | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ |
| 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ | |
| 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ | |
| 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ | |
| 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ | |
| $53$ | 53.4.3.2 | $x^{4} - 212$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 53.4.3.2 | $x^{4} - 212$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 53.4.3.2 | $x^{4} - 212$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 53.4.3.2 | $x^{4} - 212$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 53.4.3.2 | $x^{4} - 212$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |