Normalized defining polynomial
\( x^{20} - x^{19} - 39 x^{18} + 28 x^{17} + 593 x^{16} - 302 x^{15} - 4531 x^{14} + 1664 x^{13} + 18779 x^{12} - 5250 x^{11} - 42734 x^{10} + 10050 x^{9} + 52063 x^{8} - 11604 x^{7} - 32303 x^{6} + 7629 x^{5} + 8990 x^{4} - 2522 x^{3} - 785 x^{2} + 296 x - 23 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7588612227812438544203562395366777=11^{16}\cdot 2777^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $49.43$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 2777$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{117249061491308935955701099637} a^{19} + \frac{255882062862717482617874355}{117249061491308935955701099637} a^{18} - \frac{3434946136040614678927557880}{117249061491308935955701099637} a^{17} - \frac{49691471835643198864512899497}{117249061491308935955701099637} a^{16} - \frac{53071504468326653302008636803}{117249061491308935955701099637} a^{15} - \frac{2664301972997687115533798582}{117249061491308935955701099637} a^{14} + \frac{44956308083362576703594188596}{117249061491308935955701099637} a^{13} + \frac{3302701846359431930538878787}{117249061491308935955701099637} a^{12} + \frac{50704801313388441015985391182}{117249061491308935955701099637} a^{11} + \frac{31089169099982194949795589764}{117249061491308935955701099637} a^{10} + \frac{25603027047145877956584183353}{117249061491308935955701099637} a^{9} - \frac{25669887413955530042944107967}{117249061491308935955701099637} a^{8} + \frac{26339323636537330651608988131}{117249061491308935955701099637} a^{7} - \frac{1210375444648707986635456402}{117249061491308935955701099637} a^{6} + \frac{11945319539490389097759902689}{117249061491308935955701099637} a^{5} + \frac{24941502965778983027106071397}{117249061491308935955701099637} a^{4} - \frac{28659921272594920696810178116}{117249061491308935955701099637} a^{3} + \frac{18778589878018902180005071510}{117249061491308935955701099637} a^{2} - \frac{46532136161063621345497651867}{117249061491308935955701099637} a + \frac{56149475804699671459630410955}{117249061491308935955701099637}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 40125051391.3 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_5\times S_4$ (as 20T34):
| A solvable group of order 120 |
| The 25 conjugacy class representatives for $C_5\times S_4$ |
| Character table for $C_5\times S_4$ is not computed |
Intermediate fields
| 4.4.2777.1, \(\Q(\zeta_{11})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $15{,}\,{\href{/LocalNumberField/2.5.0.1}{5} }$ | $20$ | $20$ | $20$ | R | $20$ | $20$ | $20$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | $15{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{5}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{5}$ | $15{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }^{2}$ | $15{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 11 | Data not computed | ||||||
| 2777 | Data not computed | ||||||