Normalized defining polynomial
\( x^{20} - 60 x^{18} + 1530 x^{16} - 31 x^{15} - 21600 x^{14} + 1395 x^{13} + 184275 x^{12} - 25110 x^{11} - 972254 x^{10} + 230175 x^{9} + 3105870 x^{8} - 1129950 x^{7} - 5547510 x^{6} + 2832749 x^{5} + 4443525 x^{4} - 2942985 x^{3} - 514350 x^{2} + 354330 x + 51151 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(75487840807181783020496368408203125=5^{35}\cdot 11^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $55.45$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(275=5^{2}\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{275}(1,·)$, $\chi_{275}(197,·)$, $\chi_{275}(199,·)$, $\chi_{275}(34,·)$, $\chi_{275}(142,·)$, $\chi_{275}(144,·)$, $\chi_{275}(87,·)$, $\chi_{275}(153,·)$, $\chi_{275}(221,·)$, $\chi_{275}(32,·)$, $\chi_{275}(208,·)$, $\chi_{275}(98,·)$, $\chi_{275}(166,·)$, $\chi_{275}(43,·)$, $\chi_{275}(111,·)$, $\chi_{275}(89,·)$, $\chi_{275}(56,·)$, $\chi_{275}(252,·)$, $\chi_{275}(254,·)$, $\chi_{275}(263,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{282001} a^{13} - \frac{68734}{282001} a^{12} - \frac{39}{282001} a^{11} - \frac{63585}{282001} a^{10} + \frac{585}{282001} a^{9} - \frac{128606}{282001} a^{8} - \frac{4212}{282001} a^{7} + \frac{16879}{282001} a^{6} + \frac{14742}{282001} a^{5} + \frac{5403}{282001} a^{4} - \frac{22113}{282001} a^{3} + \frac{58900}{282001} a^{2} + \frac{9477}{282001} a - \frac{103817}{282001}$, $\frac{1}{282001} a^{14} - \frac{42}{282001} a^{12} + \frac{75799}{282001} a^{11} + \frac{693}{282001} a^{10} + \frac{36642}{282001} a^{9} - \frac{5670}{282001} a^{8} + \frac{124298}{282001} a^{7} + \frac{23814}{282001} a^{6} + \frac{52438}{282001} a^{5} - \frac{47628}{282001} a^{4} + \frac{129348}{282001} a^{3} + \frac{35721}{282001} a^{2} - \frac{134009}{282001} a - \frac{4374}{282001}$, $\frac{1}{282001} a^{15} + \frac{8981}{282001} a^{12} - \frac{945}{282001} a^{11} - \frac{95919}{282001} a^{10} + \frac{18900}{282001} a^{9} + \frac{80865}{282001} a^{8} + \frac{128911}{282001} a^{7} - \frac{84647}{282001} a^{6} + \frac{7534}{282001} a^{5} + \frac{74273}{282001} a^{4} - \frac{47022}{282001} a^{3} + \frac{83783}{282001} a^{2} + \frac{111659}{282001} a - \frac{130299}{282001}$, $\frac{1}{282001} a^{16} - \frac{1080}{282001} a^{12} - \frac{27661}{282001} a^{11} + \frac{23760}{282001} a^{10} - \frac{97002}{282001} a^{9} + \frac{63301}{282001} a^{8} - \frac{44809}{282001} a^{7} + \frac{133773}{282001} a^{6} - \frac{65160}{282001} a^{5} - \frac{67193}{282001} a^{4} - \frac{130069}{282001} a^{3} - \frac{117366}{282001} a^{2} - \frac{78934}{282001} a + \frac{85171}{282001}$, $\frac{1}{282001} a^{17} - \frac{94118}{282001} a^{12} - \frac{18360}{282001} a^{11} + \frac{39442}{282001} a^{10} + \frac{131099}{282001} a^{9} + \frac{87204}{282001} a^{8} + \frac{96829}{282001} a^{7} + \frac{116096}{282001} a^{6} + \frac{62111}{282001} a^{5} + \frac{65151}{282001} a^{4} - \frac{29321}{282001} a^{3} + \frac{82841}{282001} a^{2} - \frac{113706}{282001} a + \frac{114038}{282001}$, $\frac{1}{282001} a^{18} - \frac{22032}{282001} a^{12} + \frac{34853}{282001} a^{11} - \frac{18710}{282001} a^{10} - \frac{125962}{282001} a^{9} + \frac{4243}{282001} a^{8} - \frac{97515}{282001} a^{7} - \frac{113801}{282001} a^{6} + \frac{107787}{282001} a^{5} + \frac{42430}{282001} a^{4} + \frac{18887}{282001} a^{3} - \frac{139164}{282001} a^{2} + \frac{101161}{282001} a + \frac{4243}{282001}$, $\frac{1}{282001} a^{19} + \frac{32735}{282001} a^{12} - \frac{31955}{282001} a^{11} - \frac{49714}{282001} a^{10} - \frac{79083}{282001} a^{9} + \frac{1141}{282001} a^{8} - \frac{134256}{282001} a^{7} + \frac{26596}{282001} a^{6} - \frac{26978}{282001} a^{5} + \frac{53361}{282001} a^{4} - \frac{35052}{282001} a^{3} + \frac{17359}{282001} a^{2} + \frac{120767}{282001} a + \frac{13967}{282001}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 73895548051.9 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 20 |
| The 20 conjugacy class representatives for $C_{20}$ |
| Character table for $C_{20}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.15125.1, 5.5.390625.1, \(\Q(\zeta_{25})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | $20$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | R | $20$ | $20$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | $20$ | $20$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $11$ | 11.10.5.2 | $x^{10} + 1331 x^{4} - 14641 x^{2} + 805255$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 11.10.5.2 | $x^{10} + 1331 x^{4} - 14641 x^{2} + 805255$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |