Normalized defining polynomial
\( x^{20} - 60 x^{18} + 1410 x^{16} - 17660 x^{14} + 132675 x^{12} - 630384 x^{10} + 1928971 x^{8} - 3766752 x^{6} + 4502727 x^{4} - 2981448 x^{2} + 832113 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7428460430560760661253303852421087232=2^{40}\cdot 3^{10}\cdot 10273^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $69.75$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 10273$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3}$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{9} - \frac{1}{3} a^{3}$, $\frac{1}{9} a^{10} + \frac{2}{9} a^{4} - \frac{1}{3} a^{2}$, $\frac{1}{9} a^{11} + \frac{2}{9} a^{5} - \frac{1}{3} a^{3}$, $\frac{1}{9} a^{12} - \frac{1}{9} a^{6} + \frac{1}{3} a^{4} - \frac{1}{3} a^{2}$, $\frac{1}{27} a^{13} - \frac{1}{27} a^{11} - \frac{1}{27} a^{7} + \frac{10}{27} a^{5} - \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{27} a^{14} - \frac{1}{27} a^{12} - \frac{1}{27} a^{8} + \frac{1}{27} a^{6} + \frac{1}{3} a^{4}$, $\frac{1}{27} a^{15} - \frac{1}{27} a^{11} - \frac{1}{27} a^{9} - \frac{8}{27} a^{5} - \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{459} a^{16} + \frac{2}{153} a^{14} - \frac{25}{459} a^{12} - \frac{19}{459} a^{10} + \frac{13}{153} a^{8} + \frac{7}{459} a^{6} + \frac{6}{17} a^{4} - \frac{5}{51} a^{2} - \frac{3}{17}$, $\frac{1}{459} a^{17} + \frac{2}{153} a^{15} - \frac{8}{459} a^{13} + \frac{5}{153} a^{11} + \frac{13}{153} a^{9} - \frac{10}{459} a^{7} - \frac{25}{459} a^{5} + \frac{4}{17} a^{3} + \frac{8}{51} a$, $\frac{1}{161383579767} a^{18} - \frac{168532963}{161383579767} a^{16} + \frac{289795759}{17931508863} a^{14} + \frac{3512721821}{161383579767} a^{12} + \frac{5365633609}{161383579767} a^{10} + \frac{2719881157}{17931508863} a^{8} - \frac{5715100244}{53794526589} a^{6} + \frac{9850853540}{53794526589} a^{4} + \frac{3727515349}{17931508863} a^{2} - \frac{231677136}{5977169621}$, $\frac{1}{484150739301} a^{19} + \frac{61021750}{161383579767} a^{17} + \frac{1572583703}{161383579767} a^{15} - \frac{5277233504}{484150739301} a^{13} + \frac{5538925475}{161383579767} a^{11} - \frac{23132597486}{161383579767} a^{9} - \frac{14684113241}{484150739301} a^{7} + \frac{4532388476}{17931508863} a^{5} - \frac{9984814958}{53794526589} a^{3} - \frac{428823925}{5977169621} a$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1609466316240 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times D_5\wr C_2$ (as 20T92):
| A solvable group of order 400 |
| The 28 conjugacy class representatives for $C_2\times D_5\wr C_2$ |
| Character table for $C_2\times D_5\wr C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{3}) \), 4.4.23668992.2, 10.10.26260367920128.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 10273 | Data not computed | ||||||