Normalized defining polynomial
\( x^{20} - 2 x^{19} - 60 x^{18} + 17 x^{17} + 1471 x^{16} + 1718 x^{15} - 16187 x^{14} - 39300 x^{13} + 62822 x^{12} + 303701 x^{11} + 127754 x^{10} - 819879 x^{9} - 1254600 x^{8} + 67624 x^{7} + 1479197 x^{6} + 976031 x^{5} - 187919 x^{4} - 324785 x^{3} - 11881 x^{2} + 34267 x - 1181 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7328106503776662626239166259765625=5^{16}\cdot 6029^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $49.35$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 6029$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{5} a^{16} - \frac{1}{5} a^{15} - \frac{2}{5} a^{14} + \frac{2}{5} a^{13} - \frac{2}{5} a^{12} - \frac{2}{5} a^{11} + \frac{2}{5} a^{10} + \frac{2}{5} a^{6} - \frac{2}{5} a^{5} + \frac{1}{5} a^{4} - \frac{1}{5} a^{3} + \frac{1}{5} a^{2} + \frac{1}{5} a - \frac{1}{5}$, $\frac{1}{5} a^{17} + \frac{2}{5} a^{15} + \frac{1}{5} a^{12} + \frac{2}{5} a^{10} + \frac{2}{5} a^{7} - \frac{1}{5} a^{5} + \frac{2}{5} a^{2} - \frac{1}{5}$, $\frac{1}{25} a^{18} + \frac{1}{25} a^{17} + \frac{2}{25} a^{16} + \frac{7}{25} a^{15} - \frac{1}{5} a^{14} + \frac{6}{25} a^{13} - \frac{9}{25} a^{12} - \frac{3}{25} a^{11} + \frac{12}{25} a^{10} - \frac{2}{5} a^{9} + \frac{2}{25} a^{8} + \frac{12}{25} a^{7} + \frac{4}{25} a^{6} - \frac{6}{25} a^{5} + \frac{2}{5} a^{4} + \frac{12}{25} a^{3} - \frac{8}{25} a^{2} - \frac{11}{25} a - \frac{1}{25}$, $\frac{1}{3340391922807967031989323275} a^{19} + \frac{26650764486795135182300276}{3340391922807967031989323275} a^{18} + \frac{98072319319910422193841932}{3340391922807967031989323275} a^{17} - \frac{56941190257028420028793268}{3340391922807967031989323275} a^{16} + \frac{208455886477260415894664506}{668078384561593406397864655} a^{15} + \frac{929362071534680729919225831}{3340391922807967031989323275} a^{14} - \frac{1205575804594158638189391184}{3340391922807967031989323275} a^{13} - \frac{1658576737128685339094345273}{3340391922807967031989323275} a^{12} - \frac{447231589304220520128681813}{3340391922807967031989323275} a^{11} - \frac{589998530862989791438154}{133615676912318681279572931} a^{10} - \frac{1162307994505826785752759873}{3340391922807967031989323275} a^{9} + \frac{536390371846541467630594412}{3340391922807967031989323275} a^{8} - \frac{380737201982520256741081286}{3340391922807967031989323275} a^{7} - \frac{1091916733150441345896146181}{3340391922807967031989323275} a^{6} + \frac{253630342394699230654477591}{668078384561593406397864655} a^{5} + \frac{1402647998882495462374279412}{3340391922807967031989323275} a^{4} - \frac{1179531543066507050742884558}{3340391922807967031989323275} a^{3} + \frac{1010571064118850914053227774}{3340391922807967031989323275} a^{2} - \frac{87079469708575221899108626}{3340391922807967031989323275} a - \frac{148973261309897586941491}{565688725285007118033755}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 27849473193.8 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 3840 |
| The 36 conjugacy class representatives for t20n288 |
| Character table for t20n288 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.753625.1, 10.10.2839753203125.1, 10.10.85604360308203125.2, 10.10.17120872061640625.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.12.10.1 | $x^{12} + 6 x^{11} + 27 x^{10} + 80 x^{9} + 195 x^{8} + 366 x^{7} + 571 x^{6} + 702 x^{5} + 1005 x^{4} + 1140 x^{3} + 357 x^{2} - 138 x + 44$ | $6$ | $2$ | $10$ | $D_6$ | $[\ ]_{6}^{2}$ | |
| 6029 | Data not computed | ||||||