Normalized defining polynomial
\( x^{20} - 2 x^{19} - 52 x^{18} + 54 x^{17} + 1043 x^{16} - 257 x^{15} - 9971 x^{14} - 3292 x^{13} + 46783 x^{12} + 33124 x^{11} - 104150 x^{10} - 94221 x^{9} + 117415 x^{8} + 120651 x^{7} - 68101 x^{6} - 76144 x^{5} + 19449 x^{4} + 22227 x^{3} - 2826 x^{2} - 2171 x + 379 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7328106503776662626239166259765625=5^{16}\cdot 6029^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $49.35$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 6029$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{4787039922414241497209802892763} a^{19} + \frac{318161010182054906029506479168}{683862846059177356744257556109} a^{18} + \frac{395605263524171599482467856354}{4787039922414241497209802892763} a^{17} + \frac{1415002135470690709591173208438}{4787039922414241497209802892763} a^{16} + \frac{1646847794811715368020315436813}{4787039922414241497209802892763} a^{15} + \frac{1475622254113385434618913409840}{4787039922414241497209802892763} a^{14} - \frac{40486677737433748284683057841}{683862846059177356744257556109} a^{13} - \frac{1653050903239184914500139781245}{4787039922414241497209802892763} a^{12} - \frac{934041260708850240206881357718}{4787039922414241497209802892763} a^{11} + \frac{1928846648947695775325784673689}{4787039922414241497209802892763} a^{10} - \frac{2171566534498565265315244172159}{4787039922414241497209802892763} a^{9} + \frac{1982332154499589463287365676863}{4787039922414241497209802892763} a^{8} + \frac{1630949550319520050096444049435}{4787039922414241497209802892763} a^{7} - \frac{2304514582046863333519379414360}{4787039922414241497209802892763} a^{6} + \frac{2130055328111871822500549523153}{4787039922414241497209802892763} a^{5} + \frac{475096881392840390304991833237}{4787039922414241497209802892763} a^{4} + \frac{2074568443163360658441919962165}{4787039922414241497209802892763} a^{3} - \frac{83007350090575886712540727841}{683862846059177356744257556109} a^{2} - \frac{1784439515873728046143768753934}{4787039922414241497209802892763} a + \frac{352851258686527642510179801821}{4787039922414241497209802892763}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 30263639022.8 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 3840 |
| The 36 conjugacy class representatives for t20n288 |
| Character table for t20n288 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.753625.1, 10.10.2839753203125.1, 10.10.85604360308203125.1, 10.10.17120872061640625.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.12.10.1 | $x^{12} + 6 x^{11} + 27 x^{10} + 80 x^{9} + 195 x^{8} + 366 x^{7} + 571 x^{6} + 702 x^{5} + 1005 x^{4} + 1140 x^{3} + 357 x^{2} - 138 x + 44$ | $6$ | $2$ | $10$ | $D_6$ | $[\ ]_{6}^{2}$ | |
| 6029 | Data not computed | ||||||