Normalized defining polynomial
\( x^{20} - 6 x^{19} - 40 x^{18} + 340 x^{17} + 74 x^{16} - 5752 x^{15} + 10688 x^{14} + 30864 x^{13} - 120232 x^{12} + 20384 x^{11} + 451848 x^{10} - 649264 x^{9} - 326024 x^{8} + 1665312 x^{7} - 1394144 x^{6} - 476416 x^{5} + 1818032 x^{4} - 1585536 x^{3} + 712224 x^{2} - 169280 x + 16928 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7303816416639774784171798530359296=2^{30}\cdot 11^{16}\cdot 23^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $49.34$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4}$, $\frac{1}{2} a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{4} a^{8}$, $\frac{1}{4} a^{9}$, $\frac{1}{4} a^{10}$, $\frac{1}{4} a^{11}$, $\frac{1}{8} a^{12}$, $\frac{1}{8} a^{13}$, $\frac{1}{8} a^{14}$, $\frac{1}{88} a^{15} + \frac{1}{22} a^{14} + \frac{1}{22} a^{13} + \frac{3}{88} a^{12} + \frac{1}{11} a^{11} + \frac{1}{22} a^{10} + \frac{3}{44} a^{9} + \frac{1}{11} a^{8} - \frac{3}{22} a^{7} - \frac{3}{22} a^{6} - \frac{1}{22} a^{4} - \frac{4}{11} a^{3} - \frac{3}{11} a^{2} + \frac{3}{11} a + \frac{4}{11}$, $\frac{1}{176} a^{16} + \frac{5}{88} a^{14} - \frac{1}{88} a^{13} - \frac{1}{44} a^{12} + \frac{1}{11} a^{11} + \frac{3}{44} a^{10} - \frac{1}{11} a^{9} - \frac{1}{22} a^{7} - \frac{5}{22} a^{6} + \frac{5}{22} a^{5} - \frac{1}{11} a^{4} + \frac{1}{11} a^{3} + \frac{2}{11} a^{2} - \frac{4}{11} a + \frac{3}{11}$, $\frac{1}{4048} a^{17} + \frac{5}{4048} a^{16} + \frac{1}{1012} a^{15} - \frac{27}{1012} a^{14} - \frac{12}{253} a^{13} + \frac{3}{92} a^{12} + \frac{1}{23} a^{11} - \frac{3}{506} a^{10} - \frac{9}{506} a^{9} + \frac{19}{1012} a^{8} - \frac{45}{506} a^{7} + \frac{4}{23} a^{6} - \frac{49}{253} a^{5} + \frac{61}{506} a^{4} - \frac{113}{253} a^{3} - \frac{40}{253} a^{2} + \frac{51}{253} a + \frac{3}{11}$, $\frac{1}{4048} a^{18} + \frac{1}{2024} a^{16} + \frac{5}{2024} a^{15} + \frac{59}{2024} a^{14} + \frac{5}{253} a^{13} - \frac{81}{2024} a^{12} - \frac{111}{1012} a^{11} - \frac{17}{506} a^{10} - \frac{29}{1012} a^{9} + \frac{91}{1012} a^{8} + \frac{83}{506} a^{7} - \frac{101}{506} a^{6} - \frac{93}{506} a^{5} + \frac{113}{506} a^{4} + \frac{19}{253} a^{3} + \frac{90}{253} a^{2} - \frac{71}{253} a$, $\frac{1}{4048} a^{19} + \frac{9}{2024} a^{15} - \frac{9}{506} a^{14} - \frac{73}{2024} a^{13} + \frac{7}{1012} a^{12} - \frac{53}{1012} a^{11} - \frac{109}{1012} a^{10} - \frac{1}{92} a^{9} - \frac{14}{253} a^{8} - \frac{63}{253} a^{7} + \frac{61}{253} a^{6} + \frac{28}{253} a^{5} - \frac{19}{253} a^{4} - \frac{6}{253} a^{3} - \frac{106}{253} a^{2} + \frac{13}{253} a - \frac{3}{11}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 43517716745.6 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_2^4:C_5$ (as 20T46):
| A solvable group of order 160 |
| The 16 conjugacy class representatives for $C_2\times C_2^4:C_5$ |
| Character table for $C_2\times C_2^4:C_5$ |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.10.5048580365312.1, 10.10.2670699013250048.1, 10.10.116117348402176.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 32 sibling: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $11$ | 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| $23$ | $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |