Normalized defining polynomial
\( x^{20} - 4 x^{19} - 54 x^{18} + 142 x^{17} + 1215 x^{16} - 1658 x^{15} - 14226 x^{14} + 5956 x^{13} + 91351 x^{12} + 20666 x^{11} - 319628 x^{10} - 208840 x^{9} + 584299 x^{8} + 561074 x^{7} - 505908 x^{6} - 639678 x^{5} + 156250 x^{4} + 296450 x^{3} - 2608 x^{2} - 43810 x - 263 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7303816416639774784171798530359296=2^{30}\cdot 11^{16}\cdot 23^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $49.34$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{77} a^{15} + \frac{25}{77} a^{14} + \frac{9}{77} a^{13} - \frac{16}{77} a^{12} + \frac{13}{77} a^{11} + \frac{1}{7} a^{10} + \frac{16}{77} a^{9} - \frac{24}{77} a^{8} + \frac{36}{77} a^{7} - \frac{32}{77} a^{6} + \frac{3}{7} a^{5} - \frac{12}{77} a^{4} - \frac{26}{77} a^{3} - \frac{19}{77} a^{2} - \frac{6}{77} a + \frac{1}{77}$, $\frac{1}{77} a^{16} - \frac{10}{77} a^{13} + \frac{4}{11} a^{12} - \frac{6}{77} a^{11} - \frac{4}{11} a^{10} + \frac{38}{77} a^{9} + \frac{20}{77} a^{8} - \frac{8}{77} a^{7} - \frac{2}{11} a^{6} + \frac{10}{77} a^{5} - \frac{34}{77} a^{4} + \frac{15}{77} a^{3} + \frac{1}{11} a^{2} - \frac{3}{77} a - \frac{25}{77}$, $\frac{1}{77} a^{17} - \frac{10}{77} a^{14} + \frac{4}{11} a^{13} - \frac{6}{77} a^{12} - \frac{4}{11} a^{11} + \frac{38}{77} a^{10} + \frac{20}{77} a^{9} - \frac{8}{77} a^{8} - \frac{2}{11} a^{7} + \frac{10}{77} a^{6} - \frac{34}{77} a^{5} + \frac{15}{77} a^{4} + \frac{1}{11} a^{3} - \frac{3}{77} a^{2} - \frac{25}{77} a$, $\frac{1}{77} a^{18} - \frac{30}{77} a^{14} + \frac{1}{11} a^{13} - \frac{34}{77} a^{12} + \frac{2}{11} a^{11} - \frac{24}{77} a^{10} - \frac{2}{77} a^{9} - \frac{23}{77} a^{8} - \frac{15}{77} a^{7} + \frac{31}{77} a^{6} + \frac{37}{77} a^{5} - \frac{36}{77} a^{4} - \frac{32}{77} a^{3} + \frac{16}{77} a^{2} + \frac{17}{77} a + \frac{10}{77}$, $\frac{1}{567292001086300997463473493681859} a^{19} + \frac{2027093471364585316075315230115}{567292001086300997463473493681859} a^{18} - \frac{15095323259247222459187438674}{4688363645341330557549367716379} a^{17} + \frac{504093558017101982269834745485}{81041714440900142494781927668837} a^{16} + \frac{1510547125773940356903872232818}{567292001086300997463473493681859} a^{15} + \frac{32034055538256387111285121800722}{567292001086300997463473493681859} a^{14} + \frac{156637141815954399705466819093597}{567292001086300997463473493681859} a^{13} + \frac{167791839599964873200849660220547}{567292001086300997463473493681859} a^{12} - \frac{138279788235395063199604915656498}{567292001086300997463473493681859} a^{11} + \frac{188254253859752195068105969986605}{567292001086300997463473493681859} a^{10} + \frac{7637577537832622648609984750750}{51572000098754636133043044880169} a^{9} - \frac{176924947841836967912218725533189}{567292001086300997463473493681859} a^{8} - \frac{123956422146438180222192739195721}{567292001086300997463473493681859} a^{7} - \frac{131605658738429211674761836830292}{567292001086300997463473493681859} a^{6} + \frac{224954781373930979462441578927812}{567292001086300997463473493681859} a^{5} - \frac{254064546582644470882992301273638}{567292001086300997463473493681859} a^{4} + \frac{277696948867771449123159680680004}{567292001086300997463473493681859} a^{3} - \frac{86987176694497510311061447935635}{567292001086300997463473493681859} a^{2} - \frac{51185904546370686574469331736121}{567292001086300997463473493681859} a + \frac{59554088532131800799443395032684}{567292001086300997463473493681859}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 36744656987.7 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_2^4:C_5$ (as 20T46):
| A solvable group of order 160 |
| The 16 conjugacy class representatives for $C_2\times C_2^4:C_5$ |
| Character table for $C_2\times C_2^4:C_5$ |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.10.2670699013250048.2, 10.10.5048580365312.1, 10.10.116117348402176.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 32 sibling: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $11$ | 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| $23$ | 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |