Normalized defining polynomial
\( x^{20} - 4 x^{19} - 52 x^{18} + 138 x^{17} + 1252 x^{16} - 1396 x^{15} - 16494 x^{14} - 2978 x^{13} + 114593 x^{12} + 138432 x^{11} - 345938 x^{10} - 844624 x^{9} + 1044 x^{8} + 1741890 x^{7} + 1829836 x^{6} - 256700 x^{5} - 1985280 x^{4} - 1827912 x^{3} - 827226 x^{2} - 193988 x - 18877 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7303816416639774784171798530359296=2^{30}\cdot 11^{16}\cdot 23^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $49.34$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{11} a^{15} + \frac{1}{11} a^{13} + \frac{5}{11} a^{12} - \frac{4}{11} a^{11} + \frac{4}{11} a^{10} - \frac{4}{11} a^{9} - \frac{1}{11} a^{8} - \frac{2}{11} a^{7} + \frac{4}{11} a^{6} - \frac{4}{11} a^{4} + \frac{2}{11} a^{3} - \frac{4}{11} a^{2} + \frac{1}{11} a + \frac{1}{11}$, $\frac{1}{11} a^{16} + \frac{1}{11} a^{14} + \frac{5}{11} a^{13} - \frac{4}{11} a^{12} + \frac{4}{11} a^{11} - \frac{4}{11} a^{10} - \frac{1}{11} a^{9} - \frac{2}{11} a^{8} + \frac{4}{11} a^{7} - \frac{4}{11} a^{5} + \frac{2}{11} a^{4} - \frac{4}{11} a^{3} + \frac{1}{11} a^{2} + \frac{1}{11} a$, $\frac{1}{11} a^{17} + \frac{5}{11} a^{14} - \frac{5}{11} a^{13} - \frac{1}{11} a^{12} - \frac{5}{11} a^{10} + \frac{2}{11} a^{9} + \frac{5}{11} a^{8} + \frac{2}{11} a^{7} + \frac{3}{11} a^{6} + \frac{2}{11} a^{5} - \frac{1}{11} a^{3} + \frac{5}{11} a^{2} - \frac{1}{11} a - \frac{1}{11}$, $\frac{1}{11} a^{18} - \frac{5}{11} a^{14} + \frac{5}{11} a^{13} - \frac{3}{11} a^{12} + \frac{4}{11} a^{11} + \frac{4}{11} a^{10} + \frac{3}{11} a^{9} - \frac{4}{11} a^{8} + \frac{2}{11} a^{7} + \frac{4}{11} a^{6} - \frac{3}{11} a^{4} - \frac{5}{11} a^{3} - \frac{3}{11} a^{2} + \frac{5}{11} a - \frac{5}{11}$, $\frac{1}{104586436537534440185213} a^{19} + \frac{3360605681976182169001}{104586436537534440185213} a^{18} + \frac{21856925207066457509}{864350715186235042853} a^{17} + \frac{3319346244771738019141}{104586436537534440185213} a^{16} + \frac{3049333553692520269862}{104586436537534440185213} a^{15} - \frac{12106411502977796912793}{104586436537534440185213} a^{14} + \frac{44764902627980478458998}{104586436537534440185213} a^{13} - \frac{3379911766821242292460}{9507857867048585471383} a^{12} + \frac{26970031621438560924583}{104586436537534440185213} a^{11} + \frac{45179406775506574900883}{104586436537534440185213} a^{10} - \frac{16670422893108578016784}{104586436537534440185213} a^{9} + \frac{14371084575545187333927}{104586436537534440185213} a^{8} + \frac{41862498741147428340607}{104586436537534440185213} a^{7} + \frac{17713285030607090950985}{104586436537534440185213} a^{6} - \frac{2635016673101663343630}{104586436537534440185213} a^{5} - \frac{16026054003375704377163}{104586436537534440185213} a^{4} + \frac{4988197584545178007233}{104586436537534440185213} a^{3} + \frac{29750419738002683474146}{104586436537534440185213} a^{2} + \frac{32872459506913532847732}{104586436537534440185213} a - \frac{1085537829754219330702}{2432242710175219539191}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 41430036329.1 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4:C_5$ (as 20T17):
| A solvable group of order 80 |
| The 8 conjugacy class representatives for $C_2^4:C_5$ |
| Character table for $C_2^4:C_5$ |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.10.116117348402176.1 x2, 10.10.116117348402176.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 16 sibling: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $11$ | 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| $23$ | 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |