Normalized defining polynomial
\( x^{20} - 438 x^{18} + 80864 x^{16} - 8271656 x^{14} + 517755720 x^{12} - 20646179760 x^{10} + 528715968864 x^{8} - 8538377065024 x^{6} + 82763463901760 x^{4} - 433542795843328 x^{2} + 931139348459776 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(728595962694391038340952582792874557440000000000=2^{40}\cdot 5^{10}\cdot 13^{4}\cdot 29^{4}\cdot 31^{4}\cdot 1381^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $247.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 13, 29, 31, 1381$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{2} a^{4}$, $\frac{1}{2} a^{5}$, $\frac{1}{4} a^{6}$, $\frac{1}{4} a^{7}$, $\frac{1}{8} a^{8}$, $\frac{1}{8} a^{9}$, $\frac{1}{8} a^{10}$, $\frac{1}{16} a^{11}$, $\frac{1}{16} a^{12}$, $\frac{1}{16} a^{13}$, $\frac{1}{44192} a^{14} - \frac{219}{22096} a^{12} - \frac{499}{11048} a^{10} - \frac{557}{11048} a^{8} + \frac{281}{5524} a^{6} - \frac{275}{1381} a^{4} + \frac{262}{1381} a^{2}$, $\frac{1}{44192} a^{15} - \frac{219}{22096} a^{13} + \frac{383}{22096} a^{11} - \frac{557}{11048} a^{9} + \frac{281}{5524} a^{7} - \frac{275}{1381} a^{5} + \frac{262}{1381} a^{3}$, $\frac{1}{122058304} a^{16} - \frac{219}{61029152} a^{14} + \frac{2527}{3814322} a^{12} + \frac{218301}{3814322} a^{10} - \frac{124009}{15257288} a^{8} + \frac{380881}{3814322} a^{6} + \frac{319142}{1907161} a^{4} - \frac{368}{1381} a^{2}$, $\frac{1}{122058304} a^{17} - \frac{219}{61029152} a^{15} + \frac{2527}{3814322} a^{13} - \frac{160753}{30514576} a^{11} - \frac{124009}{15257288} a^{9} + \frac{380881}{3814322} a^{7} + \frac{319142}{1907161} a^{5} + \frac{645}{2762} a^{3}$, $\frac{1}{14595744302166943289723868678589440623104} a^{18} + \frac{3413311921051811064818159809475}{3648936075541735822430967169647360155776} a^{16} + \frac{19444826825979720811931891895429009}{1824468037770867911215483584823680077888} a^{14} - \frac{27934410550923516233659371673031638975}{1824468037770867911215483584823680077888} a^{12} - \frac{50568809182262617613846861577634296733}{1824468037770867911215483584823680077888} a^{10} - \frac{6347059904524269377783386574992440195}{114029252360679244450967724051480004868} a^{8} - \frac{7573857719159697499639664608865460361}{456117009442716977803870896205920019472} a^{6} - \frac{12831914381586293689293078810953931}{82570059638435368900049039863490228} a^{4} + \frac{12467242672483215209089957442205}{119580100852187355394712584885576} a^{2} + \frac{6898427548967347129303269671}{43294750489568195291351406548}$, $\frac{1}{14595744302166943289723868678589440623104} a^{19} + \frac{3413311921051811064818159809475}{3648936075541735822430967169647360155776} a^{17} + \frac{19444826825979720811931891895429009}{1824468037770867911215483584823680077888} a^{15} - \frac{27934410550923516233659371673031638975}{1824468037770867911215483584823680077888} a^{13} - \frac{50568809182262617613846861577634296733}{1824468037770867911215483584823680077888} a^{11} - \frac{6347059904524269377783386574992440195}{114029252360679244450967724051480004868} a^{9} - \frac{7573857719159697499639664608865460361}{456117009442716977803870896205920019472} a^{7} - \frac{12831914381586293689293078810953931}{82570059638435368900049039863490228} a^{5} + \frac{12467242672483215209089957442205}{119580100852187355394712584885576} a^{3} + \frac{6898427548967347129303269671}{43294750489568195291351406548} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 498475164989000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 3686400 |
| The 114 conjugacy class representatives for t20n1013 are not computed |
| Character table for t20n1013 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.10.109268775200000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 sibling: | data not computed |
| Degree 32 sibling: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ | R | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | R | R | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $13$ | 13.6.0.1 | $x^{6} + x^{2} - 2 x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 13.6.0.1 | $x^{6} + x^{2} - 2 x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $29$ | 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.3.2.1 | $x^{3} - 29$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 29.3.2.1 | $x^{3} - 29$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 29.5.0.1 | $x^{5} - x + 11$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 29.5.0.1 | $x^{5} - x + 11$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| $31$ | 31.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 31.4.0.1 | $x^{4} - 2 x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 31.6.4.3 | $x^{6} + 713 x^{3} + 138384$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 31.8.0.1 | $x^{8} - x + 22$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 1381 | Data not computed | ||||||