Normalized defining polynomial
\( x^{20} - 3 x^{19} - 69 x^{18} + 171 x^{17} + 2045 x^{16} - 3905 x^{15} - 34113 x^{14} + 45691 x^{13} + 350741 x^{12} - 282690 x^{11} - 2282540 x^{10} + 761812 x^{9} + 9278956 x^{8} + 631491 x^{7} - 22303995 x^{6} - 9053970 x^{5} + 27746442 x^{4} + 19787211 x^{3} - 11465334 x^{2} - 13744080 x - 3231351 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(728357606894840197718025054931640625=3^{6}\cdot 5^{16}\cdot 23^{6}\cdot 89^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $62.10$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 23, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{15} a^{16} - \frac{1}{5} a^{14} - \frac{2}{5} a^{13} - \frac{7}{15} a^{12} + \frac{7}{15} a^{11} - \frac{1}{5} a^{10} + \frac{1}{15} a^{9} + \frac{2}{15} a^{8} - \frac{2}{5} a^{7} + \frac{4}{15} a^{6} + \frac{1}{15} a^{5} + \frac{4}{15} a^{4} + \frac{1}{5} a^{3} + \frac{2}{5} a^{2} + \frac{1}{5} a - \frac{2}{5}$, $\frac{1}{15} a^{17} - \frac{1}{5} a^{15} - \frac{2}{5} a^{14} - \frac{7}{15} a^{13} + \frac{7}{15} a^{12} - \frac{1}{5} a^{11} + \frac{1}{15} a^{10} + \frac{2}{15} a^{9} - \frac{2}{5} a^{8} + \frac{4}{15} a^{7} + \frac{1}{15} a^{6} + \frac{4}{15} a^{5} + \frac{1}{5} a^{4} + \frac{2}{5} a^{3} + \frac{1}{5} a^{2} - \frac{2}{5} a$, $\frac{1}{1455} a^{18} + \frac{4}{1455} a^{17} + \frac{1}{1455} a^{16} - \frac{111}{485} a^{15} + \frac{47}{1455} a^{14} + \frac{32}{97} a^{13} + \frac{204}{485} a^{12} + \frac{392}{1455} a^{11} - \frac{27}{485} a^{10} + \frac{212}{485} a^{9} - \frac{49}{485} a^{8} - \frac{727}{1455} a^{7} - \frac{122}{485} a^{6} + \frac{293}{1455} a^{5} - \frac{41}{1455} a^{4} - \frac{32}{485} a^{3} + \frac{46}{97} a^{2} - \frac{94}{485} a + \frac{197}{485}$, $\frac{1}{6340818999281159183002215078221819481875025} a^{19} - \frac{607180861977136337424916735099381572087}{2113606333093719727667405026073939827291675} a^{18} + \frac{14899458367051845470753453247085661515173}{2113606333093719727667405026073939827291675} a^{17} + \frac{183135199744448521123916361714136201171184}{6340818999281159183002215078221819481875025} a^{16} - \frac{210956392342973817832923052912702838584117}{6340818999281159183002215078221819481875025} a^{15} - \frac{596474016280852354326137760158544441747314}{6340818999281159183002215078221819481875025} a^{14} - \frac{1016606282040203649931166796987213990210082}{2113606333093719727667405026073939827291675} a^{13} - \frac{2880408390485746550624950993986782809959481}{6340818999281159183002215078221819481875025} a^{12} - \frac{1908479669359665652664143398390081084102251}{6340818999281159183002215078221819481875025} a^{11} + \frac{418918899754686731207401818573908108618106}{2113606333093719727667405026073939827291675} a^{10} - \frac{574771480242085239740286975145365988469783}{2113606333093719727667405026073939827291675} a^{9} - \frac{2402724094696724777562251323172817180876481}{6340818999281159183002215078221819481875025} a^{8} + \frac{831846149142113251905596186354840605960384}{6340818999281159183002215078221819481875025} a^{7} - \frac{555818512696697830931645305485627119116531}{6340818999281159183002215078221819481875025} a^{6} - \frac{3094376504951754871068127074374925378841267}{6340818999281159183002215078221819481875025} a^{5} + \frac{3084133154311057174849725086211173456360711}{6340818999281159183002215078221819481875025} a^{4} - \frac{463853405498297205782056469903994289431612}{2113606333093719727667405026073939827291675} a^{3} + \frac{249158777432785627540926933869332682819373}{2113606333093719727667405026073939827291675} a^{2} - \frac{47535345215739787643111886072206819881902}{2113606333093719727667405026073939827291675} a + \frac{654353587937495046390882680199906492128761}{2113606333093719727667405026073939827291675}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 208796920302 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 15360 |
| The 90 conjugacy class representatives for t20n466 are not computed |
| Character table for t20n466 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.767625.1, 10.10.2946240703125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}$ | R | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.8.6.1 | $x^{8} + 9 x^{4} + 36$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ |
| 3.12.0.1 | $x^{12} - x^{4} - x^{3} - x^{2} + x - 1$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |
| $5$ | 5.6.5.1 | $x^{6} - 5$ | $6$ | $1$ | $5$ | $D_{6}$ | $[\ ]_{6}^{2}$ |
| 5.6.5.1 | $x^{6} - 5$ | $6$ | $1$ | $5$ | $D_{6}$ | $[\ ]_{6}^{2}$ | |
| 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $23$ | 23.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 23.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 23.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 23.8.6.1 | $x^{8} + 299 x^{4} + 25921$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |
| $89$ | 89.4.2.1 | $x^{4} + 979 x^{2} + 285156$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 89.4.2.1 | $x^{4} + 979 x^{2} + 285156$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 89.6.3.2 | $x^{6} - 7921 x^{2} + 4934783$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 89.6.0.1 | $x^{6} - x + 6$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |