Normalized defining polynomial
\( x^{20} - 8 x^{19} - 12 x^{18} + 226 x^{17} - 123 x^{16} - 2666 x^{15} + 3138 x^{14} + 17018 x^{13} - 24119 x^{12} - 63492 x^{11} + 92520 x^{10} + 138594 x^{9} - 188890 x^{8} - 165550 x^{7} + 196554 x^{6} + 91516 x^{5} - 90361 x^{4} - 14680 x^{3} + 11874 x^{2} - 1144 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(706388839731582814105670315409408=2^{30}\cdot 3^{15}\cdot 71^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $43.90$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 71$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{1482568011698658110733988411759} a^{19} - \frac{285584972430803318719262513399}{1482568011698658110733988411759} a^{18} + \frac{314288759275483037679175795819}{1482568011698658110733988411759} a^{17} - \frac{84390615429592701803371920137}{1482568011698658110733988411759} a^{16} - \frac{223501630140857532159046970467}{1482568011698658110733988411759} a^{15} - \frac{15494035670863591923545095923}{36160195407284344164243619799} a^{14} - \frac{589795408957959443290368022514}{1482568011698658110733988411759} a^{13} - \frac{61117405357686432626968789193}{1482568011698658110733988411759} a^{12} + \frac{131980059453745839792180112449}{1482568011698658110733988411759} a^{11} + \frac{441289182549943709763332351169}{1482568011698658110733988411759} a^{10} + \frac{7169167704754833369746237592}{36160195407284344164243619799} a^{9} - \frac{594921287065328307404293098791}{1482568011698658110733988411759} a^{8} + \frac{618639688626627267713852869495}{1482568011698658110733988411759} a^{7} + \frac{56753463735416924288799240671}{1482568011698658110733988411759} a^{6} - \frac{97277652315050138457908205695}{1482568011698658110733988411759} a^{5} + \frac{691983637865149370495713206692}{1482568011698658110733988411759} a^{4} + \frac{438970259064672157984814142332}{1482568011698658110733988411759} a^{3} + \frac{15816286443123885576150110681}{36160195407284344164243619799} a^{2} - \frac{10752673665537582672725907815}{1482568011698658110733988411759} a - \frac{23383984029560059131753547846}{1482568011698658110733988411759}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7244239011.09 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_5\times C_5:D_4$ (as 20T53):
| A solvable group of order 200 |
| The 65 conjugacy class representatives for $C_5\times C_5:D_4$ are not computed |
| Character table for $C_5\times C_5:D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{3}) \), 4.4.122688.1, 10.10.6323239406592.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $20$ | $20$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}$ | $20$ | $20$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $71$ | 71.5.0.1 | $x^{5} - x + 8$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ |
| 71.5.0.1 | $x^{5} - x + 8$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 71.10.9.5 | $x^{10} - 18176$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |