Normalized defining polynomial
\( x^{20} - 9 x^{19} - 129 x^{18} + 1144 x^{17} + 6145 x^{16} - 55673 x^{15} - 136555 x^{14} + 1355486 x^{13} + 1391729 x^{12} - 18053417 x^{11} - 3132925 x^{10} + 134002170 x^{9} - 55598389 x^{8} - 532500985 x^{7} + 464927625 x^{6} + 983198086 x^{5} - 1305212247 x^{4} - 458891619 x^{3} + 1222599377 x^{2} - 387824762 x - 46005884 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(694161316497577089027749764022640050176=2^{24}\cdot 83^{4}\cdot 983^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $87.51$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 83, 983$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{171347797795916170767117043062832835607347401469173989232489562154200782986234908966} a^{19} + \frac{80648891694723383727096728969972728479518790793239104699892219510798141027149311491}{171347797795916170767117043062832835607347401469173989232489562154200782986234908966} a^{18} - \frac{81389161521143814965516535717452709860128240091218518155350454537135927162707161699}{171347797795916170767117043062832835607347401469173989232489562154200782986234908966} a^{17} - \frac{23719655739968374167062666384711481359737006381629795651442445905997318865619688163}{85673898897958085383558521531416417803673700734586994616244781077100391493117454483} a^{16} + \frac{43549203620042507465505553313286147544805689702754272952747862429365980860361967363}{171347797795916170767117043062832835607347401469173989232489562154200782986234908966} a^{15} - \frac{17595871195878028601154921029857863933922067404005189346459495263240718792411285005}{171347797795916170767117043062832835607347401469173989232489562154200782986234908966} a^{14} - \frac{5468093711907012535137165072309244527840603807509394319961864240661803866526938027}{171347797795916170767117043062832835607347401469173989232489562154200782986234908966} a^{13} - \frac{7369102950502804196230307218821494136282356099995331759408782523125543816776302835}{85673898897958085383558521531416417803673700734586994616244781077100391493117454483} a^{12} - \frac{30183872541180616790447203321211471600877734584150992899410576362922475801831388143}{171347797795916170767117043062832835607347401469173989232489562154200782986234908966} a^{11} - \frac{42820516168308806149678666558514821605987334119623736660880428833547818161429567499}{171347797795916170767117043062832835607347401469173989232489562154200782986234908966} a^{10} + \frac{44834306049758494325101774280482162587105582350910512400792503243307787794243493551}{171347797795916170767117043062832835607347401469173989232489562154200782986234908966} a^{9} + \frac{22341081323662556902279677116318047633514186183991463259431026387945666416108325859}{85673898897958085383558521531416417803673700734586994616244781077100391493117454483} a^{8} + \frac{49780947534647166805273834695943179124203061645342111696876257890643161557148424899}{171347797795916170767117043062832835607347401469173989232489562154200782986234908966} a^{7} + \frac{65356439208227975090617943254147673318707193636758905231977129406769321329999435793}{171347797795916170767117043062832835607347401469173989232489562154200782986234908966} a^{6} + \frac{29929253152493467720204640177297945017839397686599267584571091053735583347203484443}{171347797795916170767117043062832835607347401469173989232489562154200782986234908966} a^{5} + \frac{39740958453232587862461235311205161342860578178984843138404463722092928916552134017}{85673898897958085383558521531416417803673700734586994616244781077100391493117454483} a^{4} - \frac{23982074065408990108053147614178606636225882009322134013879130066160286916244956865}{171347797795916170767117043062832835607347401469173989232489562154200782986234908966} a^{3} - \frac{28691874672891245050811624601808476693920840101967028503660804096709839698164765003}{171347797795916170767117043062832835607347401469173989232489562154200782986234908966} a^{2} + \frac{20802746178083155820296878720182830771646204639060468137835002972004475772018748495}{171347797795916170767117043062832835607347401469173989232489562154200782986234908966} a - \frac{22907799494959558388037175100340512659529322816505113004346340132882822257482218213}{85673898897958085383558521531416417803673700734586994616244781077100391493117454483}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15156642950900 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 30720 |
| The 63 conjugacy class representatives for t20n567 are not computed |
| Character table for t20n567 is not computed |
Intermediate fields
| 5.5.81589.1, 10.10.1646683831999531264.3, 10.10.1704131819776.1, 10.10.1646683831999531264.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 83 | Data not computed | ||||||
| 983 | Data not computed | ||||||