Normalized defining polynomial
\( x^{20} - x^{19} - 154 x^{18} + 75 x^{17} + 10051 x^{16} - 2 x^{15} - 361954 x^{14} - 157978 x^{13} + 7832688 x^{12} + 6292522 x^{11} - 103951264 x^{10} - 112550514 x^{9} + 829070309 x^{8} + 1036532987 x^{7} - 3753286546 x^{6} - 4728386579 x^{5} + 8751855594 x^{4} + 8947530117 x^{3} - 8595162260 x^{2} - 2950847201 x + 2032171457 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(694161316497577089027749764022640050176=2^{24}\cdot 83^{4}\cdot 983^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $87.51$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 83, 983$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{2149764226075712758237516721112582681263164666937247192882883613353289099512} a^{19} + \frac{192060009450906381498505639389311708524487173452042591466036561380190092105}{1074882113037856379118758360556291340631582333468623596441441806676644549756} a^{18} - \frac{250830204559336309254521563790243940219136290240823642441336621177685690497}{537441056518928189559379180278145670315791166734311798220720903338322274878} a^{17} + \frac{12484814840172173378878511221639997778326189623860344263983650111803764455}{2149764226075712758237516721112582681263164666937247192882883613353289099512} a^{16} - \frac{80672719564240680788245987873703568832883878832496290099799489244639174602}{268720528259464094779689590139072835157895583367155899110360451669161137439} a^{15} + \frac{301726762517766034946349149670273872520097529086066308241110251135211775535}{1074882113037856379118758360556291340631582333468623596441441806676644549756} a^{14} - \frac{82806679270025731142011620748545366243809516139116673078792304211854600734}{268720528259464094779689590139072835157895583367155899110360451669161137439} a^{13} + \frac{410063049257413302969056164427680087575133103803657543902462852686405170419}{1074882113037856379118758360556291340631582333468623596441441806676644549756} a^{12} - \frac{225913168705331550105192310563393658047426015019027486488203553376598540035}{1074882113037856379118758360556291340631582333468623596441441806676644549756} a^{11} + \frac{100223252745454029422087180992242974933886794243982487746725965828178605665}{268720528259464094779689590139072835157895583367155899110360451669161137439} a^{10} + \frac{40274746105665519144749436409331680133824867785722844017964786225269689898}{268720528259464094779689590139072835157895583367155899110360451669161137439} a^{9} - \frac{492458403821986146320851769454397409068043460583171888762935397080406505181}{1074882113037856379118758360556291340631582333468623596441441806676644549756} a^{8} - \frac{538615051292619995664239838479547435492709782227187271438334333856263087193}{2149764226075712758237516721112582681263164666937247192882883613353289099512} a^{7} - \frac{107256841839330869769812342088894802898084714299830533400422458730856761769}{268720528259464094779689590139072835157895583367155899110360451669161137439} a^{6} - \frac{240328635807141920310474035370280528868423655435574974603792281214866838749}{1074882113037856379118758360556291340631582333468623596441441806676644549756} a^{5} - \frac{248765103882512669034935419068015108731903569772859532872365459821651850001}{2149764226075712758237516721112582681263164666937247192882883613353289099512} a^{4} - \frac{191478325986445201961119934619817849984524234677173858721359741569773347993}{2149764226075712758237516721112582681263164666937247192882883613353289099512} a^{3} - \frac{358938224251391665567521112940861309902775402144947119669381922376716486791}{1074882113037856379118758360556291340631582333468623596441441806676644549756} a^{2} - \frac{69349325472906971385729069545279501219641371599055235063811023690126125607}{1074882113037856379118758360556291340631582333468623596441441806676644549756} a + \frac{721830958110930077265145162080129296837465254324942237272123004710308361381}{2149764226075712758237516721112582681263164666937247192882883613353289099512}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 14827183258400 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 30720 |
| The 63 conjugacy class representatives for t20n567 are not computed |
| Character table for t20n567 is not computed |
Intermediate fields
| 5.5.81589.1, 10.10.1646683831999531264.4, 10.10.1704131819776.1, 10.10.1646683831999531264.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 83 | Data not computed | ||||||
| 983 | Data not computed | ||||||