Properties

Label 20.20.6889241355...3125.1
Degree $20$
Signature $[20, 0]$
Discriminant $5^{10}\cdot 29^{5}\cdot 61^{4}\cdot 397^{4}$
Root discriminant $39.08$
Ramified primes $5, 29, 61, 397$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T174

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 2, -40, -29, 446, 204, -2139, -702, 5197, 1267, -6784, -1314, 4843, 783, -1859, -244, 367, 36, -33, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 2*x^19 - 33*x^18 + 36*x^17 + 367*x^16 - 244*x^15 - 1859*x^14 + 783*x^13 + 4843*x^12 - 1314*x^11 - 6784*x^10 + 1267*x^9 + 5197*x^8 - 702*x^7 - 2139*x^6 + 204*x^5 + 446*x^4 - 29*x^3 - 40*x^2 + 2*x + 1)
 
gp: K = bnfinit(x^20 - 2*x^19 - 33*x^18 + 36*x^17 + 367*x^16 - 244*x^15 - 1859*x^14 + 783*x^13 + 4843*x^12 - 1314*x^11 - 6784*x^10 + 1267*x^9 + 5197*x^8 - 702*x^7 - 2139*x^6 + 204*x^5 + 446*x^4 - 29*x^3 - 40*x^2 + 2*x + 1, 1)
 

Normalized defining polynomial

\( x^{20} - 2 x^{19} - 33 x^{18} + 36 x^{17} + 367 x^{16} - 244 x^{15} - 1859 x^{14} + 783 x^{13} + 4843 x^{12} - 1314 x^{11} - 6784 x^{10} + 1267 x^{9} + 5197 x^{8} - 702 x^{7} - 2139 x^{6} + 204 x^{5} + 446 x^{4} - 29 x^{3} - 40 x^{2} + 2 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[20, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(68892413554441036870090126953125=5^{10}\cdot 29^{5}\cdot 61^{4}\cdot 397^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $39.08$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 29, 61, 397$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{659843} a^{18} + \frac{194485}{659843} a^{17} + \frac{107636}{659843} a^{16} + \frac{321842}{659843} a^{15} - \frac{247947}{659843} a^{14} - \frac{82990}{659843} a^{13} - \frac{287282}{659843} a^{12} - \frac{185200}{659843} a^{11} - \frac{192719}{659843} a^{10} + \frac{181063}{659843} a^{9} + \frac{81908}{659843} a^{8} + \frac{72677}{659843} a^{7} - \frac{300920}{659843} a^{6} - \frac{137326}{659843} a^{5} + \frac{201603}{659843} a^{4} - \frac{137696}{659843} a^{3} - \frac{224401}{659843} a^{2} - \frac{198205}{659843} a - \frac{185387}{659843}$, $\frac{1}{1081482677} a^{19} + \frac{50}{1081482677} a^{18} - \frac{37251903}{1081482677} a^{17} - \frac{357278293}{1081482677} a^{16} + \frac{22368036}{1081482677} a^{15} + \frac{426961110}{1081482677} a^{14} - \frac{318631523}{1081482677} a^{13} + \frac{524376176}{1081482677} a^{12} + \frac{416578018}{1081482677} a^{11} - \frac{299233178}{1081482677} a^{10} + \frac{342819442}{1081482677} a^{9} + \frac{324244258}{1081482677} a^{8} + \frac{61969515}{1081482677} a^{7} + \frac{467473065}{1081482677} a^{6} + \frac{481660965}{1081482677} a^{5} - \frac{314928854}{1081482677} a^{4} + \frac{11837868}{98316607} a^{3} - \frac{479954163}{1081482677} a^{2} - \frac{4285685}{1081482677} a + \frac{517134853}{1081482677}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $19$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 2487836358.27 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T174:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 960
The 35 conjugacy class representatives for t20n174
Character table for t20n174 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 4.4.725.1, 5.5.24217.1, 10.10.1832697153125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 24 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $20$ $20$ R ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ R ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$5$5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$29$29.2.1.2$x^{2} + 58$$2$$1$$1$$C_2$$[\ ]_{2}$
29.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
29.4.0.1$x^{4} - x + 19$$1$$4$$0$$C_4$$[\ ]^{4}$
29.4.0.1$x^{4} - x + 19$$1$$4$$0$$C_4$$[\ ]^{4}$
29.8.4.1$x^{8} + 31958 x^{4} - 24389 x^{2} + 255328441$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
61Data not computed
397Data not computed