Normalized defining polynomial
\( x^{20} - x^{19} - 43 x^{18} + 55 x^{17} + 694 x^{16} - 948 x^{15} - 5617 x^{14} + 7593 x^{13} + 25005 x^{12} - 31958 x^{11} - 62169 x^{10} + 73269 x^{9} + 82377 x^{8} - 88997 x^{7} - 50613 x^{6} + 50884 x^{5} + 10366 x^{4} - 9435 x^{3} - 1314 x^{2} + 513 x + 81 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6659802967827443834044914879928481=397^{4}\cdot 401^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $49.11$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $397, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{3} a^{17} - \frac{1}{3} a^{16} - \frac{1}{3} a^{15} + \frac{1}{3} a^{14} + \frac{1}{3} a^{13} - \frac{1}{3} a^{11} + \frac{1}{3} a^{8} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{9} a^{18} - \frac{1}{9} a^{17} + \frac{2}{9} a^{16} + \frac{1}{9} a^{15} + \frac{1}{9} a^{14} - \frac{1}{3} a^{13} - \frac{1}{9} a^{12} - \frac{1}{3} a^{11} + \frac{1}{3} a^{10} + \frac{1}{9} a^{9} + \frac{1}{3} a^{8} + \frac{4}{9} a^{5} + \frac{1}{3} a^{4} - \frac{2}{9} a^{3} - \frac{2}{9} a^{2} - \frac{1}{3} a$, $\frac{1}{4077411554013408265008915531} a^{19} - \frac{196686103706312697250529638}{4077411554013408265008915531} a^{18} + \frac{581148535213090554352697264}{4077411554013408265008915531} a^{17} - \frac{1675296715406891616113383067}{4077411554013408265008915531} a^{16} + \frac{919281680856465421648527979}{4077411554013408265008915531} a^{15} - \frac{435277598492792793756425069}{1359137184671136088336305177} a^{14} - \frac{1147080573712883558535043393}{4077411554013408265008915531} a^{13} - \frac{159241034947393755368686654}{453045728223712029445435059} a^{12} + \frac{43037248500022958240217049}{1359137184671136088336305177} a^{11} + \frac{1800198344952296450504782399}{4077411554013408265008915531} a^{10} + \frac{17671044295112409211839673}{151015242741237343148478353} a^{9} + \frac{86273468781904336645460387}{453045728223712029445435059} a^{8} + \frac{3907575878854489300163589}{151015242741237343148478353} a^{7} + \frac{1433374200193697197723182019}{4077411554013408265008915531} a^{6} + \frac{221134616818586194095975320}{453045728223712029445435059} a^{5} + \frac{66414488827998798395802790}{4077411554013408265008915531} a^{4} + \frac{1983569798687263187972353393}{4077411554013408265008915531} a^{3} + \frac{615728463394398596542933954}{1359137184671136088336305177} a^{2} + \frac{36911779938317271994607609}{151015242741237343148478353} a + \frac{12952173283472134233737882}{151015242741237343148478353}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 59603781728.5 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_2^4:D_5$ (as 20T87):
| A solvable group of order 320 |
| The 20 conjugacy class representatives for $C_2\times C_2^4:D_5$ |
| Character table for $C_2\times C_2^4:D_5$ |
Intermediate fields
| 5.5.160801.1, 10.10.4075289860972009.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{5}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 397 | Data not computed | ||||||
| 401 | Data not computed | ||||||