Normalized defining polynomial
\( x^{20} - 10 x^{19} + 5 x^{18} + 240 x^{17} - 616 x^{16} - 1804 x^{15} + 7652 x^{14} + 3506 x^{13} - 39328 x^{12} + 12394 x^{11} + 102554 x^{10} - 63382 x^{9} - 149398 x^{8} + 102876 x^{7} + 127665 x^{6} - 73218 x^{5} - 62725 x^{4} + 19586 x^{3} + 14486 x^{2} - 484 x - 673 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6234865940162794507742264996921344=2^{34}\cdot 881^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $48.95$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 881$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{3} a^{11} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2}$, $\frac{1}{6} a^{12} - \frac{1}{6} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{2}$, $\frac{1}{6} a^{13} - \frac{1}{6} a^{11} - \frac{1}{6} a^{9} - \frac{1}{2} a^{7} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{6} a - \frac{1}{3}$, $\frac{1}{18} a^{14} - \frac{1}{18} a^{13} + \frac{1}{18} a^{11} - \frac{1}{9} a^{10} - \frac{1}{18} a^{9} + \frac{1}{3} a^{8} - \frac{1}{2} a^{7} + \frac{7}{18} a^{6} - \frac{1}{9} a^{5} - \frac{1}{9} a^{4} + \frac{2}{9} a^{3} - \frac{1}{2} a^{2} - \frac{5}{18} a - \frac{5}{18}$, $\frac{1}{18} a^{15} - \frac{1}{18} a^{13} + \frac{1}{18} a^{12} - \frac{1}{18} a^{11} - \frac{1}{6} a^{10} - \frac{1}{18} a^{9} - \frac{1}{6} a^{8} - \frac{1}{9} a^{7} + \frac{5}{18} a^{6} - \frac{2}{9} a^{5} + \frac{1}{9} a^{4} - \frac{5}{18} a^{3} + \frac{2}{9} a^{2} + \frac{1}{9} a + \frac{1}{18}$, $\frac{1}{36} a^{16} - \frac{1}{36} a^{12} - \frac{1}{18} a^{11} - \frac{1}{12} a^{10} + \frac{1}{18} a^{9} + \frac{1}{9} a^{8} + \frac{7}{18} a^{7} - \frac{5}{12} a^{6} - \frac{7}{36} a^{4} + \frac{2}{9} a^{3} + \frac{11}{36} a^{2} - \frac{4}{9} a + \frac{7}{36}$, $\frac{1}{36} a^{17} - \frac{1}{36} a^{13} - \frac{1}{18} a^{12} - \frac{1}{12} a^{11} + \frac{1}{18} a^{10} + \frac{1}{9} a^{9} + \frac{7}{18} a^{8} - \frac{5}{12} a^{7} - \frac{7}{36} a^{5} + \frac{2}{9} a^{4} + \frac{11}{36} a^{3} - \frac{4}{9} a^{2} + \frac{7}{36} a$, $\frac{1}{8399010168} a^{18} - \frac{1}{933223352} a^{17} + \frac{73142125}{8399010168} a^{16} - \frac{14815640}{1049876271} a^{15} - \frac{133780469}{8399010168} a^{14} - \frac{162978467}{2799670056} a^{13} - \frac{290574211}{4199505084} a^{12} - \frac{305291279}{2799670056} a^{11} + \frac{93360679}{933223352} a^{10} + \frac{21743125}{349958757} a^{9} - \frac{3785059025}{8399010168} a^{8} + \frac{720326929}{8399010168} a^{7} + \frac{1252105693}{4199505084} a^{6} + \frac{2062388675}{8399010168} a^{5} - \frac{392798446}{1049876271} a^{4} + \frac{305207837}{8399010168} a^{3} - \frac{658395641}{4199505084} a^{2} - \frac{1677585367}{8399010168} a + \frac{2031297683}{8399010168}$, $\frac{1}{96580217921832} a^{19} + \frac{1435}{24145054480458} a^{18} + \frac{132643505201}{12072527240229} a^{17} - \frac{550876652089}{96580217921832} a^{16} - \frac{803443651643}{32193405973944} a^{15} + \frac{386745980425}{48290108960916} a^{14} + \frac{2381229779563}{32193405973944} a^{13} - \frac{3270779871325}{96580217921832} a^{12} - \frac{416874016255}{16096702986972} a^{11} - \frac{16001481465395}{96580217921832} a^{10} + \frac{12251953561111}{96580217921832} a^{9} - \frac{2651764369819}{12072527240229} a^{8} + \frac{23711024359267}{96580217921832} a^{7} - \frac{3823112218525}{96580217921832} a^{6} + \frac{20861935121863}{96580217921832} a^{5} - \frac{3086812815157}{96580217921832} a^{4} - \frac{619443182135}{3577045108216} a^{3} - \frac{10233230359651}{96580217921832} a^{2} + \frac{815078525012}{4024175746743} a - \frac{4509061966711}{96580217921832}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 41113221362.2 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1920 |
| The 24 conjugacy class representatives for t20n230 |
| Character table for t20n230 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 5.5.3104644.1, 10.10.1233768238942208.1, 10.10.78961167292301312.1, 10.10.616884119471104.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 sibling: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 32 sibling: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.12.1 | $x^{8} + 6 x^{6} + 8 x^{5} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ |
| 2.12.22.60 | $x^{12} - 84 x^{10} + 444 x^{8} + 32 x^{6} - 272 x^{4} - 320 x^{2} + 64$ | $6$ | $2$ | $22$ | $D_6$ | $[3]_{3}^{2}$ | |
| 881 | Data not computed | ||||||