Normalized defining polynomial
\( x^{20} - 90 x^{18} - 40 x^{17} + 3080 x^{16} + 2280 x^{15} - 52700 x^{14} - 52020 x^{13} + 490950 x^{12} + 581720 x^{11} - 2506780 x^{10} - 3253820 x^{9} + 6840010 x^{8} + 8539280 x^{7} - 10571900 x^{6} - 10171560 x^{5} + 9821380 x^{4} + 4761040 x^{3} - 4563040 x^{2} - 327680 x + 514706 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6096448022178797977600000000000000000000=2^{48}\cdot 5^{20}\cdot 17^{6}\cdot 97^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $97.56$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 17, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{24031299311} a^{18} + \frac{6536544811}{24031299311} a^{17} + \frac{11084055977}{24031299311} a^{16} + \frac{11062511493}{24031299311} a^{15} + \frac{1217927340}{24031299311} a^{14} - \frac{918666959}{24031299311} a^{13} + \frac{1968036015}{24031299311} a^{12} - \frac{9790154258}{24031299311} a^{11} - \frac{11505603415}{24031299311} a^{10} + \frac{1691705707}{24031299311} a^{9} - \frac{9898275436}{24031299311} a^{8} + \frac{42615466}{125818321} a^{7} - \frac{2512506308}{24031299311} a^{6} - \frac{1483841815}{24031299311} a^{5} + \frac{3764817155}{24031299311} a^{4} + \frac{8463059843}{24031299311} a^{3} + \frac{7674278839}{24031299311} a^{2} + \frac{10086782346}{24031299311} a + \frac{10667771668}{24031299311}$, $\frac{1}{22943184806069751967490412269007506450989} a^{19} + \frac{111723485406278485792568417893}{22943184806069751967490412269007506450989} a^{18} - \frac{2321093845264734535328373110895748293020}{22943184806069751967490412269007506450989} a^{17} + \frac{186975436643422668272828629615285396710}{22943184806069751967490412269007506450989} a^{16} + \frac{7541971620794508998820092018340190079152}{22943184806069751967490412269007506450989} a^{15} + \frac{2933783034014420906786480823475352261437}{22943184806069751967490412269007506450989} a^{14} - \frac{6770607690672557528556020736669184393893}{22943184806069751967490412269007506450989} a^{13} + \frac{7116779978296972329265468739693963114932}{22943184806069751967490412269007506450989} a^{12} + \frac{6442630339659370613403258653472355501648}{22943184806069751967490412269007506450989} a^{11} - \frac{10590116244311418330371790346718374020596}{22943184806069751967490412269007506450989} a^{10} - \frac{6500117813527227883777119543055726455731}{22943184806069751967490412269007506450989} a^{9} + \frac{6316723465956452323870609660609329387309}{22943184806069751967490412269007506450989} a^{8} - \frac{8843913955738603340692968121993582476631}{22943184806069751967490412269007506450989} a^{7} + \frac{4334282428249816001786342002700079702231}{22943184806069751967490412269007506450989} a^{6} + \frac{10613156800077425768666006541801149343733}{22943184806069751967490412269007506450989} a^{5} + \frac{7824972404882111098311288329534352425773}{22943184806069751967490412269007506450989} a^{4} + \frac{7907844849952388901094100531239498801145}{22943184806069751967490412269007506450989} a^{3} - \frac{3633092716261577193198004077545573665516}{22943184806069751967490412269007506450989} a^{2} - \frac{3946256417227633587745031978241410643248}{22943184806069751967490412269007506450989} a + \frac{5258601076596262779250770297083270104715}{22943184806069751967490412269007506450989}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 65803151167000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 204800 |
| The 116 conjugacy class representatives for t20n872 are not computed |
| Character table for t20n872 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 10.10.1479680000000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{3}$ | R | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.10.10.14 | $x^{10} + 10 x^{6} + 10 x^{5} + 100 x^{2} + 50 x + 25$ | $5$ | $2$ | $10$ | $(C_5^2 : C_4) : C_2$ | $[5/4, 5/4]_{4}^{2}$ |
| 5.10.10.14 | $x^{10} + 10 x^{6} + 10 x^{5} + 100 x^{2} + 50 x + 25$ | $5$ | $2$ | $10$ | $(C_5^2 : C_4) : C_2$ | $[5/4, 5/4]_{4}^{2}$ | |
| $17$ | 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.8.0.1 | $x^{8} + x^{2} - 3 x + 3$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 17.8.4.1 | $x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $97$ | 97.2.1.2 | $x^{2} + 485$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 97.2.1.2 | $x^{2} + 485$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |