Normalized defining polynomial
\( x^{20} - x^{19} - 54 x^{18} + 39 x^{17} + 1162 x^{16} - 590 x^{15} - 12841 x^{14} + 4472 x^{13} + 78424 x^{12} - 18184 x^{11} - 265853 x^{10} + 38670 x^{9} + 479629 x^{8} - 35258 x^{7} - 425102 x^{6} - 2135 x^{5} + 161071 x^{4} + 17687 x^{3} - 18671 x^{2} - 3172 x + 89 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(608357696176518435903681459502978907689=11^{16}\cdot 163^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $86.94$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 163$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{551932968057681518140619002341281534488813} a^{19} + \frac{218612748667953628858408702947984158012608}{551932968057681518140619002341281534488813} a^{18} - \frac{19221955399933173964463404442269339876907}{551932968057681518140619002341281534488813} a^{17} - \frac{68572281768143445292747372765644335590218}{551932968057681518140619002341281534488813} a^{16} - \frac{134344085606399440650159157913301788091606}{551932968057681518140619002341281534488813} a^{15} + \frac{102203671790568222773539372248529371859848}{551932968057681518140619002341281534488813} a^{14} + \frac{156181114238798382990418210399979612095199}{551932968057681518140619002341281534488813} a^{13} + \frac{111676470496538323242443849275029541275943}{551932968057681518140619002341281534488813} a^{12} + \frac{19229565918952721814672508504130808198011}{551932968057681518140619002341281534488813} a^{11} - \frac{177231534320837981045669119873216577355570}{551932968057681518140619002341281534488813} a^{10} - \frac{226166982322525966495584647108452612680874}{551932968057681518140619002341281534488813} a^{9} + \frac{149786798847405384661130962454003668378904}{551932968057681518140619002341281534488813} a^{8} - \frac{266430567656405065454402992263178754254956}{551932968057681518140619002341281534488813} a^{7} - \frac{242079944359498975563015561003172644968153}{551932968057681518140619002341281534488813} a^{6} + \frac{5624096360990773104470905955541014075274}{551932968057681518140619002341281534488813} a^{5} + \frac{109762033876991411604536667051997796960129}{551932968057681518140619002341281534488813} a^{4} + \frac{50802222094256231260527378446276247246409}{551932968057681518140619002341281534488813} a^{3} + \frac{43180003528541873592219059154075332648766}{551932968057681518140619002341281534488813} a^{2} + \frac{18733490950925870881476379689131947590735}{551932968057681518140619002341281534488813} a - \frac{9348379700671609310168072212915025381928}{551932968057681518140619002341281534488813}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 8339520574340 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_5\times A_4$ (as 20T14):
| A solvable group of order 60 |
| The 20 conjugacy class representatives for $C_5\times A_4$ |
| Character table for $C_5\times A_4$ |
Intermediate fields
| 4.4.26569.1, \(\Q(\zeta_{11})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 30 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $15{,}\,{\href{/LocalNumberField/2.5.0.1}{5} }$ | $15{,}\,{\href{/LocalNumberField/3.5.0.1}{5} }$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | $15{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | $15{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | $15{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | $15{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{5}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{5}$ | $15{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 11 | Data not computed | ||||||
| 163 | Data not computed | ||||||