Normalized defining polynomial
\( x^{20} - 10 x^{19} - 180 x^{18} + 1495 x^{17} + 13450 x^{16} - 82815 x^{15} - 517835 x^{14} + 2177710 x^{13} + 10985540 x^{12} - 28324355 x^{11} - 131147817 x^{10} + 158724730 x^{9} + 843001245 x^{8} - 68831430 x^{7} - 2366271710 x^{6} - 1902871615 x^{5} + 714683790 x^{4} + 1254927950 x^{3} + 322525720 x^{2} - 21836260 x - 672164 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(593222928997626461368027114868164062500000000=2^{8}\cdot 5^{26}\cdot 41^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $173.25$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{41} a^{12} - \frac{16}{41} a^{11} - \frac{7}{41} a^{10} + \frac{12}{41} a^{9} - \frac{15}{41} a^{8} + \frac{4}{41} a^{7} + \frac{11}{41} a^{6} + \frac{17}{41} a^{5} + \frac{2}{41} a^{4} + \frac{15}{41} a^{3} - \frac{18}{41} a^{2} + \frac{9}{41} a + \frac{10}{41}$, $\frac{1}{41} a^{13} - \frac{17}{41} a^{11} - \frac{18}{41} a^{10} + \frac{13}{41} a^{9} + \frac{10}{41} a^{8} - \frac{7}{41} a^{7} - \frac{12}{41} a^{6} - \frac{13}{41} a^{5} + \frac{6}{41} a^{4} + \frac{17}{41} a^{3} + \frac{8}{41} a^{2} - \frac{10}{41} a - \frac{4}{41}$, $\frac{1}{41} a^{14} - \frac{3}{41} a^{11} + \frac{17}{41} a^{10} + \frac{9}{41} a^{9} - \frac{16}{41} a^{8} + \frac{15}{41} a^{7} + \frac{10}{41} a^{6} + \frac{8}{41} a^{5} + \frac{10}{41} a^{4} + \frac{17}{41} a^{3} + \frac{12}{41} a^{2} - \frac{15}{41} a + \frac{6}{41}$, $\frac{1}{41} a^{15} + \frac{10}{41} a^{11} - \frac{12}{41} a^{10} + \frac{20}{41} a^{9} + \frac{11}{41} a^{8} - \frac{19}{41} a^{7} + \frac{20}{41} a^{5} - \frac{18}{41} a^{4} + \frac{16}{41} a^{3} + \frac{13}{41} a^{2} - \frac{8}{41} a - \frac{11}{41}$, $\frac{1}{82} a^{16} - \frac{1}{82} a^{14} - \frac{1}{82} a^{13} - \frac{1}{82} a^{12} + \frac{10}{41} a^{11} + \frac{8}{41} a^{10} - \frac{10}{41} a^{9} - \frac{6}{41} a^{8} - \frac{11}{82} a^{7} - \frac{17}{82} a^{6} + \frac{5}{82} a^{5} - \frac{11}{41} a^{4} + \frac{19}{82} a^{3} + \frac{3}{41} a^{2} + \frac{19}{41} a - \frac{15}{41}$, $\frac{1}{82} a^{17} - \frac{1}{82} a^{15} - \frac{1}{82} a^{14} - \frac{1}{82} a^{13} + \frac{4}{41} a^{11} + \frac{19}{41} a^{10} - \frac{3}{41} a^{9} - \frac{39}{82} a^{8} - \frac{15}{82} a^{7} + \frac{31}{82} a^{6} - \frac{17}{41} a^{5} - \frac{21}{82} a^{4} + \frac{17}{41} a^{3} - \frac{6}{41} a^{2} + \frac{18}{41} a - \frac{18}{41}$, $\frac{1}{82} a^{18} - \frac{1}{82} a^{15} - \frac{1}{82} a^{13} - \frac{1}{82} a^{12} + \frac{8}{41} a^{11} + \frac{9}{41} a^{10} + \frac{27}{82} a^{9} - \frac{21}{82} a^{8} + \frac{9}{41} a^{7} - \frac{37}{82} a^{6} + \frac{14}{41} a^{5} + \frac{8}{41} a^{4} + \frac{3}{82} a^{3} - \frac{18}{41} a^{2} - \frac{9}{41} a - \frac{8}{41}$, $\frac{1}{77751291611669928934710131308686205063415215053620367977167196214312477404} a^{19} - \frac{217695929354643620994497402055975386752931010495440974719737827700448639}{77751291611669928934710131308686205063415215053620367977167196214312477404} a^{18} - \frac{80979044754618835122018311840331806364957642983938508200061038354520131}{77751291611669928934710131308686205063415215053620367977167196214312477404} a^{17} - \frac{9804341498080927530749514954567498732350503173767638832708625225316108}{19437822902917482233677532827171551265853803763405091994291799053578119351} a^{16} - \frac{209548958057010789272008719095446184750205164564597914144033071945351761}{19437822902917482233677532827171551265853803763405091994291799053578119351} a^{15} - \frac{1769562779698433239747940500634738562308666456945453598082767743935323}{1065086186461231903215207278201180891279660480186580383248865701565924348} a^{14} + \frac{204993088958812393609625408201706622971111915536635849416147926308065273}{19437822902917482233677532827171551265853803763405091994291799053578119351} a^{13} + \frac{56013045666523157646998988576716692078106948780967367423861134123097903}{19437822902917482233677532827171551265853803763405091994291799053578119351} a^{12} + \frac{44980320594110022575373221153840020700861436179015564325084938437387626}{474093241534572737406769093345647591850092774717197365714434123258002911} a^{11} - \frac{17342726044434952683400014277946317880312895196124848158738369662297277059}{77751291611669928934710131308686205063415215053620367977167196214312477404} a^{10} - \frac{5295982258068218080506507311054569073013818093176964378024163587345541849}{38875645805834964467355065654343102531707607526810183988583598107156238702} a^{9} - \frac{758473340553553281863153507932428751003863138302662345979712900727624413}{38875645805834964467355065654343102531707607526810183988583598107156238702} a^{8} - \frac{3785608889098848905921200101674375117623478229917273902282083591137814473}{77751291611669928934710131308686205063415215053620367977167196214312477404} a^{7} + \frac{27709867048622577662598280239278731744611992477001727105958142212990810007}{77751291611669928934710131308686205063415215053620367977167196214312477404} a^{6} - \frac{30033810033839153445500839012873149414167463401467507053155315304623868139}{77751291611669928934710131308686205063415215053620367977167196214312477404} a^{5} + \frac{663811805996149750888431605165560728317460916353957993801983793099082215}{38875645805834964467355065654343102531707607526810183988583598107156238702} a^{4} - \frac{439617350685009618873659068596652160413993853589464571421573962353788439}{38875645805834964467355065654343102531707607526810183988583598107156238702} a^{3} - \frac{8065441143788813198986796454070211529401019470648523908317600868100657148}{19437822902917482233677532827171551265853803763405091994291799053578119351} a^{2} - \frac{8279618795502959902783746748261781449895578982840643531530704607166887178}{19437822902917482233677532827171551265853803763405091994291799053578119351} a + \frac{645550428639193519030357442667785351367853553281758851688037475607167164}{19437822902917482233677532827171551265853803763405091994291799053578119351}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 103193338100000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_5:D_5.Q_8$ (as 20T105):
| A solvable group of order 400 |
| The 28 conjugacy class representatives for $C_5:D_5.Q_8$ |
| Character table for $C_5:D_5.Q_8$ is not computed |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.4.1723025.1, 10.10.452563285156250000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | R | $20$ | $20$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | $20$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | $20$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | $20$ | $20$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| $5$ | 5.10.15.16 | $x^{10} - 10 x^{6} + 10$ | $10$ | $1$ | $15$ | $F_{5}\times C_2$ | $[7/4]_{4}^{2}$ |
| 5.10.11.7 | $x^{10} + 5 x^{2} + 10$ | $10$ | $1$ | $11$ | $F_{5}\times C_2$ | $[5/4]_{4}^{2}$ | |
| 41 | Data not computed | ||||||