Properties

Label 20.20.5693355329...0000.1
Degree $20$
Signature $[20, 0]$
Discriminant $2^{20}\cdot 5^{10}\cdot 11^{18}$
Root discriminant $38.71$
Ramified primes $2, 5, 11$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_2\times C_{10}$ (as 20T3)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![121, 0, -1815, 0, 8954, 0, -21417, 0, 28556, 0, -22407, 0, 10450, 0, -2838, 0, 429, 0, -33, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 33*x^18 + 429*x^16 - 2838*x^14 + 10450*x^12 - 22407*x^10 + 28556*x^8 - 21417*x^6 + 8954*x^4 - 1815*x^2 + 121)
 
gp: K = bnfinit(x^20 - 33*x^18 + 429*x^16 - 2838*x^14 + 10450*x^12 - 22407*x^10 + 28556*x^8 - 21417*x^6 + 8954*x^4 - 1815*x^2 + 121, 1)
 

Normalized defining polynomial

\( x^{20} - 33 x^{18} + 429 x^{16} - 2838 x^{14} + 10450 x^{12} - 22407 x^{10} + 28556 x^{8} - 21417 x^{6} + 8954 x^{4} - 1815 x^{2} + 121 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[20, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(56933553290160450365440000000000=2^{20}\cdot 5^{10}\cdot 11^{18}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $38.71$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 11$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(220=2^{2}\cdot 5\cdot 11\)
Dirichlet character group:    $\lbrace$$\chi_{220}(1,·)$, $\chi_{220}(131,·)$, $\chi_{220}(69,·)$, $\chi_{220}(211,·)$, $\chi_{220}(9,·)$, $\chi_{220}(139,·)$, $\chi_{220}(141,·)$, $\chi_{220}(79,·)$, $\chi_{220}(81,·)$, $\chi_{220}(19,·)$, $\chi_{220}(151,·)$, $\chi_{220}(89,·)$, $\chi_{220}(219,·)$, $\chi_{220}(39,·)$, $\chi_{220}(169,·)$, $\chi_{220}(171,·)$, $\chi_{220}(49,·)$, $\chi_{220}(51,·)$, $\chi_{220}(181,·)$, $\chi_{220}(201,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{11} a^{10}$, $\frac{1}{11} a^{11}$, $\frac{1}{11} a^{12}$, $\frac{1}{11} a^{13}$, $\frac{1}{11} a^{14}$, $\frac{1}{11} a^{15}$, $\frac{1}{11} a^{16}$, $\frac{1}{11} a^{17}$, $\frac{1}{1410739} a^{18} + \frac{2347}{128249} a^{16} - \frac{3447}{128249} a^{14} + \frac{4529}{128249} a^{12} - \frac{4078}{128249} a^{10} - \frac{9318}{128249} a^{8} - \frac{1462}{11659} a^{6} + \frac{5601}{11659} a^{4} + \frac{4462}{11659} a^{2} + \frac{198}{11659}$, $\frac{1}{1410739} a^{19} + \frac{2347}{128249} a^{17} - \frac{3447}{128249} a^{15} + \frac{4529}{128249} a^{13} - \frac{4078}{128249} a^{11} - \frac{9318}{128249} a^{9} - \frac{1462}{11659} a^{7} + \frac{5601}{11659} a^{5} + \frac{4462}{11659} a^{3} + \frac{198}{11659} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $19$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 2463631598.95 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times C_{10}$ (as 20T3):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 20
The 20 conjugacy class representatives for $C_2\times C_{10}$
Character table for $C_2\times C_{10}$

Intermediate fields

\(\Q(\sqrt{5}) \), \(\Q(\sqrt{55}) \), \(\Q(\sqrt{11}) \), \(\Q(\sqrt{5}, \sqrt{11})\), \(\Q(\zeta_{11})^+\), 10.10.669871503125.1, 10.10.7545432611200000.1, \(\Q(\zeta_{44})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$5$5.10.5.1$x^{10} - 50 x^{6} + 625 x^{2} - 12500$$2$$5$$5$$C_{10}$$[\ ]_{2}^{5}$
5.10.5.1$x^{10} - 50 x^{6} + 625 x^{2} - 12500$$2$$5$$5$$C_{10}$$[\ ]_{2}^{5}$
$11$11.10.9.1$x^{10} - 11$$10$$1$$9$$C_{10}$$[\ ]_{10}$
11.10.9.1$x^{10} - 11$$10$$1$$9$$C_{10}$$[\ ]_{10}$