Normalized defining polynomial
\( x^{20} - 4 x^{19} - 73 x^{18} + 266 x^{17} + 2099 x^{16} - 7034 x^{15} - 30388 x^{14} + 95007 x^{13} + 233926 x^{12} - 704949 x^{11} - 910055 x^{10} + 2903891 x^{9} + 1308453 x^{8} - 6301742 x^{7} + 1117774 x^{6} + 5673768 x^{5} - 3759592 x^{4} - 115897 x^{3} + 632356 x^{2} - 144650 x + 7067 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(53384280905783887100407820071202644801=7^{12}\cdot 199^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $76.98$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 199$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{14} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{4} a^{17} - \frac{1}{4} a^{16} + \frac{1}{4} a^{15} + \frac{1}{4} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} + \frac{1}{4} a^{11} - \frac{1}{2} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{2} a^{6} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{56} a^{18} - \frac{3}{28} a^{17} + \frac{3}{28} a^{16} + \frac{5}{14} a^{15} - \frac{3}{56} a^{14} + \frac{3}{7} a^{13} - \frac{5}{56} a^{12} + \frac{25}{56} a^{11} + \frac{3}{8} a^{10} - \frac{3}{14} a^{9} - \frac{3}{7} a^{8} - \frac{17}{56} a^{7} + \frac{1}{8} a^{6} + \frac{17}{56} a^{5} + \frac{1}{56} a^{4} - \frac{23}{56} a^{3} + \frac{25}{56} a^{2} - \frac{1}{56}$, $\frac{1}{3269741858164364577975529596349501149505374699881456} a^{19} + \frac{4965804003923046673831498243009358703512253579311}{3269741858164364577975529596349501149505374699881456} a^{18} + \frac{42013122663497467685165239433822456502052566968411}{817435464541091144493882399087375287376343674970364} a^{17} - \frac{190657588277190734398368094240402939140319667033669}{1634870929082182288987764798174750574752687349940728} a^{16} + \frac{1011978052046107992420083553989583898274813099525357}{3269741858164364577975529596349501149505374699881456} a^{15} + \frac{92026509766439249539197569364199481051635822234517}{3269741858164364577975529596349501149505374699881456} a^{14} - \frac{560433999473684811208050201888858369194687889898789}{3269741858164364577975529596349501149505374699881456} a^{13} - \frac{71041805195446319614815605585936248849042738071257}{204358866135272786123470599771843821844085918742591} a^{12} + \frac{238677682758712851527562700291687473363498074418887}{1634870929082182288987764798174750574752687349940728} a^{11} + \frac{1175632615447743293136288313416389705539487235778981}{3269741858164364577975529596349501149505374699881456} a^{10} - \frac{33644837285056060753641896820468930022188544278309}{204358866135272786123470599771843821844085918742591} a^{9} + \frac{245296564074762303019477786532729513123726753450603}{3269741858164364577975529596349501149505374699881456} a^{8} - \frac{767571016141398100390629387313466286038015318953425}{1634870929082182288987764798174750574752687349940728} a^{7} + \frac{71923201759986022735480157105323406046269951323383}{817435464541091144493882399087375287376343674970364} a^{6} - \frac{739549427031266874662432905301148546621549410664939}{1634870929082182288987764798174750574752687349940728} a^{5} - \frac{688415085802871165908074402240388948913175409119013}{1634870929082182288987764798174750574752687349940728} a^{4} + \frac{605553435375496752262555039424075894862919628675057}{1634870929082182288987764798174750574752687349940728} a^{3} + \frac{1298706369447453472163035649079292624688618881768221}{3269741858164364577975529596349501149505374699881456} a^{2} + \frac{747943978389787477976649191174405227107321091675811}{3269741858164364577975529596349501149505374699881456} a + \frac{1404468795954948859585180428223871044268417328112567}{3269741858164364577975529596349501149505374699881456}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4352158906050 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4:D_5$ (as 20T45):
| A solvable group of order 160 |
| The 10 conjugacy class representatives for $C_2^4:D_5$ |
| Character table for $C_2^4:D_5$ |
Intermediate fields
| 5.5.1940449.1, 10.10.5245121853990193.1, 10.10.5245121853990193.2, 10.10.7306454742608338849.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 16 sibling: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 32 sibling: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.4.3.1 | $x^{4} + 14$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 7.4.3.1 | $x^{4} + 14$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 7.8.6.2 | $x^{8} - 49 x^{4} + 3969$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ | |
| 199 | Data not computed | ||||||