Normalized defining polynomial
\( x^{20} - 10 x^{19} - 4 x^{18} + 283 x^{17} - 369 x^{16} - 3085 x^{15} + 5534 x^{14} + 16920 x^{13} - 33433 x^{12} - 49731 x^{11} + 101616 x^{10} + 75504 x^{9} - 158461 x^{8} - 50137 x^{7} + 118058 x^{6} + 6419 x^{5} - 37569 x^{4} + 5598 x^{3} + 3920 x^{2} - 1316 x + 113 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(52508222134942405659086438867129073664=2^{20}\cdot 33769^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $76.92$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 33769$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{160114930349970009406595331284221} a^{19} - \frac{66815282541449157373658791118203}{160114930349970009406595331284221} a^{18} - \frac{44550497527606573892038840632426}{160114930349970009406595331284221} a^{17} - \frac{77037340519685998182408759106}{160114930349970009406595331284221} a^{16} - \frac{2764816657873726238385108522279}{160114930349970009406595331284221} a^{15} + \frac{23458947619937558146370532702546}{160114930349970009406595331284221} a^{14} - \frac{59325547532352339745643906959709}{160114930349970009406595331284221} a^{13} - \frac{14285929437452781409367060631572}{160114930349970009406595331284221} a^{12} - \frac{39808625475224822433774116037587}{160114930349970009406595331284221} a^{11} + \frac{29420593599171397617565123398176}{160114930349970009406595331284221} a^{10} + \frac{13965291117796579120840929519497}{160114930349970009406595331284221} a^{9} + \frac{639135087292057205427197561088}{160114930349970009406595331284221} a^{8} + \frac{8680958099720986975515780010702}{160114930349970009406595331284221} a^{7} + \frac{9687639006689795328004687088543}{160114930349970009406595331284221} a^{6} + \frac{78417500109908828971678492234488}{160114930349970009406595331284221} a^{5} + \frac{8288079839339982011517386992583}{160114930349970009406595331284221} a^{4} - \frac{59043221651748754393610743135854}{160114930349970009406595331284221} a^{3} - \frac{21067717034665173685046787479983}{160114930349970009406595331284221} a^{2} + \frac{42694114935120765089887879532928}{160114930349970009406595331284221} a + \frac{69063468586358761218134651739049}{160114930349970009406595331284221}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2737991976410 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 61440 |
| The 126 conjugacy class representatives for t20n671 are not computed |
| Character table for t20n671 is not computed |
Intermediate fields
| 5.5.135076.1, 10.10.616133159929744.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.0.1 | $x^{8} + x^{4} + x^{3} + x + 1$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ |
| 2.12.20.2 | $x^{12} + 14 x^{10} - 5 x^{8} - 12 x^{6} - 5 x^{4} + 14 x^{2} - 11$ | $6$ | $2$ | $20$ | 12T30 | $[8/3, 8/3]_{3}^{4}$ | |
| 33769 | Data not computed | ||||||