Normalized defining polynomial
\( x^{20} - 83 x^{18} - 108 x^{17} + 2380 x^{16} + 5760 x^{15} - 27524 x^{14} - 103968 x^{13} + 77348 x^{12} + 735960 x^{11} + 616108 x^{10} - 1615050 x^{9} - 3200232 x^{8} - 714960 x^{7} + 2411685 x^{6} + 1666554 x^{5} - 423490 x^{4} - 635688 x^{3} - 65073 x^{2} + 67764 x + 15313 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(516853980088694624404163683037236690944=2^{20}\cdot 3^{10}\cdot 7^{10}\cdot 11^{8}\cdot 13^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $86.23$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 11, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{13} a^{16} + \frac{4}{13} a^{14} + \frac{5}{13} a^{13} - \frac{1}{13} a^{12} + \frac{4}{13} a^{11} - \frac{2}{13} a^{10} - \frac{1}{13} a^{9} + \frac{2}{13} a^{8} - \frac{6}{13} a^{7} + \frac{6}{13} a^{6} - \frac{6}{13} a^{5} + \frac{6}{13} a^{4} - \frac{5}{13} a^{3} - \frac{4}{13} a^{2} - \frac{4}{13} a + \frac{1}{13}$, $\frac{1}{13} a^{17} + \frac{4}{13} a^{15} + \frac{5}{13} a^{14} - \frac{1}{13} a^{13} + \frac{4}{13} a^{12} - \frac{2}{13} a^{11} - \frac{1}{13} a^{10} + \frac{2}{13} a^{9} - \frac{6}{13} a^{8} + \frac{6}{13} a^{7} - \frac{6}{13} a^{6} + \frac{6}{13} a^{5} - \frac{5}{13} a^{4} - \frac{4}{13} a^{3} - \frac{4}{13} a^{2} + \frac{1}{13} a$, $\frac{1}{46657} a^{18} - \frac{1465}{46657} a^{17} + \frac{1280}{46657} a^{16} - \frac{13122}{46657} a^{15} + \frac{10739}{46657} a^{14} - \frac{4878}{46657} a^{13} + \frac{3158}{46657} a^{12} + \frac{1845}{46657} a^{11} + \frac{18363}{46657} a^{10} + \frac{434}{3589} a^{9} + \frac{155}{46657} a^{8} + \frac{16815}{46657} a^{7} - \frac{2463}{46657} a^{6} - \frac{10874}{46657} a^{5} - \frac{13194}{46657} a^{4} - \frac{16202}{46657} a^{3} + \frac{3045}{46657} a^{2} - \frac{9260}{46657} a + \frac{12859}{46657}$, $\frac{1}{4938054874973657968018430322951439661} a^{19} + \frac{34122508535139623971776275875247}{4938054874973657968018430322951439661} a^{18} + \frac{167276376025805321371551776392496702}{4938054874973657968018430322951439661} a^{17} - \frac{109475722373952048649846957199102901}{4938054874973657968018430322951439661} a^{16} + \frac{1435090721138362844448775909258571687}{4938054874973657968018430322951439661} a^{15} + \frac{458460882376750745963573474567843393}{4938054874973657968018430322951439661} a^{14} - \frac{41853877883287845409581717769965441}{4938054874973657968018430322951439661} a^{13} + \frac{1258673070213887994607462880374400332}{4938054874973657968018430322951439661} a^{12} - \frac{758386664210926556909070064627885625}{4938054874973657968018430322951439661} a^{11} + \frac{134660759285777868943126564164360344}{4938054874973657968018430322951439661} a^{10} - \frac{537801097085166334859874970016715488}{4938054874973657968018430322951439661} a^{9} - \frac{1952214657477221470121535378318062869}{4938054874973657968018430322951439661} a^{8} - \frac{1010069098236664528229873437587448553}{4938054874973657968018430322951439661} a^{7} + \frac{4056032273123034811562044653461787}{379850374997973689847571563303956897} a^{6} + \frac{1513926540270078002812618523133118856}{4938054874973657968018430322951439661} a^{5} + \frac{308336248766799185824237608355793003}{4938054874973657968018430322951439661} a^{4} + \frac{1101283140829825717284038232879137476}{4938054874973657968018430322951439661} a^{3} + \frac{908781023838014714521775050798018331}{4938054874973657968018430322951439661} a^{2} + \frac{2411308790992423517661632776620140938}{4938054874973657968018430322951439661} a - \frac{123977261531209698230593868475854162}{4938054874973657968018430322951439661}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 8904025444480 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 100 |
| The 16 conjugacy class representatives for $D_5^2$ |
| Character table for $D_5^2$ |
Intermediate fields
| \(\Q(\sqrt{91}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{273}) \), \(\Q(\sqrt{3}, \sqrt{91})\), 10.10.249828821987576832.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 20 sibling: | data not computed |
| Degree 25 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | R | R | R | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.11 | $x^{10} - x^{8} + 3 x^{6} + x^{2} - 3$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ |
| 2.10.10.11 | $x^{10} - x^{8} + 3 x^{6} + x^{2} - 3$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ | |
| $3$ | 3.10.5.1 | $x^{10} - 18 x^{6} + 81 x^{2} - 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 3.10.5.1 | $x^{10} - 18 x^{6} + 81 x^{2} - 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $7$ | 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $11$ | 11.5.0.1 | $x^{5} + x^{2} - x + 5$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ |
| 11.5.4.2 | $x^{5} - 891$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.0.1 | $x^{5} + x^{2} - x + 5$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 11.5.4.2 | $x^{5} - 891$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| $13$ | 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |