Normalized defining polynomial
\( x^{20} - 40 x^{18} + 680 x^{16} - 12 x^{15} - 6400 x^{14} + 360 x^{13} + 36400 x^{12} - 4320 x^{11} - 128051 x^{10} + 26400 x^{9} + 273020 x^{8} - 86400 x^{7} - 327140 x^{6} + 144522 x^{5} + 180400 x^{4} - 101220 x^{3} - 20400 x^{2} + 10440 x + 1636 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5120338176785431289672851562500000000=2^{8}\cdot 5^{26}\cdot 41^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $68.46$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{10} a^{10} - \frac{1}{10} a^{5} + \frac{2}{5}$, $\frac{1}{10} a^{11} - \frac{1}{10} a^{6} + \frac{2}{5} a$, $\frac{1}{10} a^{12} - \frac{1}{10} a^{7} + \frac{2}{5} a^{2}$, $\frac{1}{10} a^{13} - \frac{1}{10} a^{8} + \frac{2}{5} a^{3}$, $\frac{1}{10} a^{14} - \frac{1}{10} a^{9} + \frac{2}{5} a^{4}$, $\frac{1}{100} a^{15} + \frac{1}{100} a^{10} - \frac{1}{2} a^{8} - \frac{19}{50} a^{5} + \frac{7}{25}$, $\frac{1}{1300} a^{16} - \frac{3}{65} a^{14} + \frac{3}{130} a^{12} + \frac{1}{1300} a^{11} + \frac{21}{130} a^{9} + \frac{4}{13} a^{8} - \frac{23}{130} a^{7} + \frac{231}{650} a^{6} + \frac{18}{65} a^{4} - \frac{2}{13} a^{3} - \frac{29}{65} a^{2} - \frac{43}{325} a + \frac{5}{13}$, $\frac{1}{1300} a^{17} + \frac{1}{260} a^{15} + \frac{3}{130} a^{13} + \frac{1}{1300} a^{12} + \frac{3}{260} a^{10} + \frac{4}{13} a^{9} + \frac{21}{65} a^{8} + \frac{231}{650} a^{7} - \frac{11}{26} a^{5} - \frac{2}{13} a^{4} - \frac{29}{65} a^{3} - \frac{43}{325} a^{2} + \frac{5}{13} a - \frac{2}{5}$, $\frac{1}{6500} a^{18} + \frac{1}{6500} a^{17} + \frac{1}{3250} a^{16} + \frac{9}{3250} a^{15} - \frac{1}{130} a^{14} + \frac{161}{6500} a^{13} - \frac{89}{6500} a^{12} + \frac{68}{1625} a^{11} + \frac{149}{3250} a^{10} + \frac{61}{130} a^{9} + \frac{101}{3250} a^{8} + \frac{613}{1625} a^{7} - \frac{224}{1625} a^{6} - \frac{557}{3250} a^{5} + \frac{23}{65} a^{4} + \frac{742}{1625} a^{3} - \frac{133}{1625} a^{2} + \frac{384}{1625} a - \frac{544}{1625}$, $\frac{1}{6500} a^{19} + \frac{1}{6500} a^{17} + \frac{1}{6500} a^{16} - \frac{3}{6500} a^{15} - \frac{189}{6500} a^{14} - \frac{1}{26} a^{13} - \frac{89}{6500} a^{12} + \frac{11}{6500} a^{11} + \frac{217}{6500} a^{10} + \frac{901}{3250} a^{9} - \frac{1}{13} a^{8} + \frac{51}{3250} a^{7} - \frac{162}{1625} a^{6} - \frac{739}{1625} a^{5} + \frac{59}{125} a^{4} - \frac{1}{13} a^{3} - \frac{558}{1625} a^{2} - \frac{283}{1625} a - \frac{226}{1625}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2258149291720 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$D_5\wr C_2$ (as 20T55):
| A solvable group of order 200 |
| The 14 conjugacy class representatives for $D_5\wr C_2$ |
| Character table for $D_5\wr C_2$ |
Intermediate fields
| \(\Q(\sqrt{205}) \), \(\Q(\sqrt{41}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{5}, \sqrt{41})\), 10.10.452563285156250000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 25 sibling: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 2.10.8.1 | $x^{10} - 2 x^{5} + 4$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| $5$ | 5.10.11.2 | $x^{10} + 5 x^{2} + 5$ | $10$ | $1$ | $11$ | $F_5$ | $[5/4]_{4}$ |
| 5.10.15.2 | $x^{10} - 15 x^{6} + 5$ | $10$ | $1$ | $15$ | $F_5$ | $[7/4]_{4}$ | |
| 41 | Data not computed | ||||||