Normalized defining polynomial
\( x^{20} - 43 x^{18} - 32 x^{17} + 666 x^{16} + 816 x^{15} - 4732 x^{14} - 7524 x^{13} + 15963 x^{12} + 31644 x^{11} - 22753 x^{10} - 63636 x^{9} + 5235 x^{8} + 60464 x^{7} + 15374 x^{6} - 23874 x^{5} - 10970 x^{4} + 2514 x^{3} + 1713 x^{2} - 36 x - 72 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(51131744381789867152791425283784704=2^{20}\cdot 3^{10}\cdot 41^{2}\cdot 53^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $54.38$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 41, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{3} a^{14} + \frac{1}{3} a^{13} + \frac{1}{3} a^{12} - \frac{1}{3} a^{11} + \frac{1}{3} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{15} + \frac{1}{3} a^{12} - \frac{1}{3} a^{11} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2}$, $\frac{1}{207} a^{16} + \frac{14}{207} a^{15} - \frac{20}{207} a^{14} + \frac{20}{207} a^{13} + \frac{62}{207} a^{12} - \frac{31}{69} a^{11} + \frac{10}{207} a^{10} - \frac{1}{207} a^{9} - \frac{2}{9} a^{8} - \frac{8}{69} a^{7} + \frac{28}{207} a^{6} - \frac{2}{9} a^{5} + \frac{98}{207} a^{4} - \frac{13}{207} a^{3} - \frac{85}{207} a^{2} - \frac{4}{69} a - \frac{14}{69}$, $\frac{1}{207} a^{17} - \frac{1}{23} a^{15} + \frac{8}{69} a^{14} - \frac{80}{207} a^{13} + \frac{5}{207} a^{12} - \frac{68}{207} a^{11} - \frac{1}{69} a^{10} - \frac{101}{207} a^{9} - \frac{70}{207} a^{8} + \frac{19}{207} a^{7} - \frac{31}{69} a^{6} + \frac{52}{207} a^{5} - \frac{5}{207} a^{4} - \frac{41}{207} a^{3} + \frac{74}{207} a^{2} - \frac{9}{23} a - \frac{11}{69}$, $\frac{1}{207} a^{18} + \frac{4}{69} a^{15} + \frac{16}{207} a^{14} + \frac{47}{207} a^{13} + \frac{7}{207} a^{12} + \frac{19}{69} a^{11} + \frac{58}{207} a^{10} - \frac{10}{207} a^{9} - \frac{50}{207} a^{8} - \frac{11}{69} a^{7} - \frac{41}{207} a^{6} + \frac{64}{207} a^{5} - \frac{56}{207} a^{4} + \frac{26}{207} a^{3} - \frac{2}{23} a^{2} + \frac{22}{69} a + \frac{4}{23}$, $\frac{1}{668676144757479071922} a^{19} - \frac{476062562657044817}{334338072378739535961} a^{18} - \frac{16900391042210891}{29072875859020829214} a^{17} - \frac{12676125727585904}{14536437929510414607} a^{16} - \frac{1889665159092000077}{111446024126246511987} a^{15} - \frac{32502990407867354585}{334338072378739535961} a^{14} + \frac{17797309000723461185}{37148674708748837329} a^{13} + \frac{161312045561205503281}{334338072378739535961} a^{12} - \frac{16455750204376157769}{74297349417497674658} a^{11} + \frac{119766747095277997945}{334338072378739535961} a^{10} + \frac{13093247518445951957}{74297349417497674658} a^{9} - \frac{162998494073909624159}{334338072378739535961} a^{8} + \frac{17723978480616558353}{74297349417497674658} a^{7} - \frac{24441589678744774984}{334338072378739535961} a^{6} - \frac{135255702024681189400}{334338072378739535961} a^{5} + \frac{116447956068809255545}{334338072378739535961} a^{4} - \frac{21149075858321068211}{334338072378739535961} a^{3} - \frac{30171318300526076414}{111446024126246511987} a^{2} + \frac{91154428605688472935}{222892048252493023974} a + \frac{17757074498631785538}{37148674708748837329}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 343897225324 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1280 |
| The 44 conjugacy class representatives for t20n196 |
| Character table for t20n196 is not computed |
Intermediate fields
| \(\Q(\sqrt{3}) \), 5.5.2382032.1, 10.10.18843607887208704.1, 10.10.2791645612919808.1, 10.10.5515202308451328.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{6}$ | R | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{10}$ | R | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $41$ | 41.4.2.1 | $x^{4} + 943 x^{2} + 242064$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 41.4.0.1 | $x^{4} - x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 41.4.0.1 | $x^{4} - x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 41.4.0.1 | $x^{4} - x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 41.4.0.1 | $x^{4} - x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $53$ | 53.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 53.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 53.8.6.1 | $x^{8} - 1643 x^{4} + 1755625$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 53.8.6.1 | $x^{8} - 1643 x^{4} + 1755625$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |