Normalized defining polynomial
\( x^{20} - 8 x^{19} - 9 x^{18} + 210 x^{17} - 171 x^{16} - 2352 x^{15} + 3459 x^{14} + 14856 x^{13} - 26247 x^{12} - 59264 x^{11} + 109138 x^{10} + 159198 x^{9} - 269151 x^{8} - 298191 x^{7} + 388827 x^{6} + 385218 x^{5} - 292176 x^{4} - 310989 x^{3} + 65157 x^{2} + 116496 x + 26139 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4841421802104669181474651611328125=3^{18}\cdot 5^{12}\cdot 13^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $48.33$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{3} a^{15} - \frac{1}{3} a^{14} + \frac{1}{3} a^{13} + \frac{1}{3} a^{12} - \frac{1}{3} a^{11} + \frac{1}{3} a^{10}$, $\frac{1}{3} a^{16} - \frac{1}{3} a^{13} + \frac{1}{3} a^{10}$, $\frac{1}{3} a^{17} - \frac{1}{3} a^{14} + \frac{1}{3} a^{11}$, $\frac{1}{237} a^{18} - \frac{1}{237} a^{17} + \frac{2}{79} a^{16} - \frac{7}{237} a^{15} + \frac{70}{237} a^{14} + \frac{39}{79} a^{13} - \frac{107}{237} a^{12} - \frac{67}{237} a^{11} + \frac{27}{79} a^{10} + \frac{9}{79} a^{9} + \frac{38}{79} a^{8} - \frac{32}{79} a^{7} + \frac{7}{79} a^{6} - \frac{38}{79} a^{5} + \frac{16}{79} a^{4} + \frac{18}{79} a^{3} + \frac{19}{79} a^{2} - \frac{39}{79} a - \frac{19}{79}$, $\frac{1}{4032795994825263363} a^{19} - \frac{1200306562204892}{1344265331608421121} a^{18} - \frac{54934566489341407}{1344265331608421121} a^{17} + \frac{18151430855062079}{1344265331608421121} a^{16} + \frac{118476959342061703}{1344265331608421121} a^{15} + \frac{536725726068754313}{1344265331608421121} a^{14} + \frac{514152799990894633}{1344265331608421121} a^{13} - \frac{509637688711770487}{1344265331608421121} a^{12} + \frac{314817036997000126}{1344265331608421121} a^{11} - \frac{1597080898363271891}{4032795994825263363} a^{10} - \frac{396125463963723574}{1344265331608421121} a^{9} - \frac{47368563447132554}{448088443869473707} a^{8} - \frac{4181370144868444}{58446318765583527} a^{7} + \frac{281970700416238138}{1344265331608421121} a^{6} - \frac{180772060874307562}{1344265331608421121} a^{5} - \frac{562608520400505446}{1344265331608421121} a^{4} - \frac{291504872473259860}{1344265331608421121} a^{3} + \frac{167429265701242828}{448088443869473707} a^{2} - \frac{324788260368927337}{1344265331608421121} a + \frac{17991523925434270}{1344265331608421121}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 59031185556.1 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4\times F_5$ (as 20T20):
| A solvable group of order 80 |
| The 20 conjugacy class representatives for $C_4\times F_5$ |
| Character table for $C_4\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{13}) \), 4.4.19773.1, 5.5.22244625.1, 10.10.6432703438078125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.10.9.2 | $x^{10} + 3$ | $10$ | $1$ | $9$ | $F_{5}\times C_2$ | $[\ ]_{10}^{4}$ |
| 3.10.9.2 | $x^{10} + 3$ | $10$ | $1$ | $9$ | $F_{5}\times C_2$ | $[\ ]_{10}^{4}$ | |
| 5 | Data not computed | ||||||
| 13 | Data not computed | ||||||