Normalized defining polynomial
\( x^{20} - 5 x^{19} - 75 x^{18} + 515 x^{17} + 1095 x^{16} - 15246 x^{15} + 20785 x^{14} + 128000 x^{13} - 442755 x^{12} + 134935 x^{11} + 1404121 x^{10} - 2101065 x^{9} - 301350 x^{8} + 2772445 x^{7} - 1487715 x^{6} - 957916 x^{5} + 1069270 x^{4} - 110925 x^{3} - 172410 x^{2} + 65070 x - 6759 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4669942026995164342224597930908203125=3^{10}\cdot 5^{31}\cdot 19^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $68.15$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{15} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{7}{15} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{2}{5}$, $\frac{1}{30} a^{11} - \frac{1}{30} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{7}{30} a^{6} + \frac{13}{30} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{3}{10} a + \frac{3}{10}$, $\frac{1}{30} a^{12} - \frac{1}{30} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{13}{30} a^{7} - \frac{1}{3} a^{6} + \frac{13}{30} a^{5} + \frac{1}{3} a^{4} + \frac{11}{30} a^{2} + \frac{3}{10}$, $\frac{1}{30} a^{13} - \frac{1}{30} a^{10} - \frac{1}{10} a^{8} - \frac{1}{3} a^{6} + \frac{13}{30} a^{5} + \frac{11}{30} a^{3} - \frac{1}{3} a^{2} + \frac{3}{10}$, $\frac{1}{30} a^{14} - \frac{1}{30} a^{10} + \frac{7}{30} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{13}{30} a^{5} - \frac{3}{10} a^{4} + \frac{3}{10}$, $\frac{1}{30} a^{15} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{4}{15} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{10}$, $\frac{1}{30} a^{16} + \frac{1}{3} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{4}{15} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{10} a$, $\frac{1}{30} a^{17} + \frac{1}{3} a^{8} + \frac{1}{15} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{7}{30} a^{2}$, $\frac{1}{69300} a^{18} + \frac{493}{69300} a^{17} + \frac{379}{34650} a^{16} - \frac{17}{3150} a^{15} - \frac{193}{13860} a^{14} + \frac{439}{34650} a^{13} - \frac{191}{11550} a^{12} + \frac{149}{11550} a^{11} - \frac{569}{23100} a^{10} - \frac{6151}{13860} a^{9} - \frac{3151}{34650} a^{8} + \frac{757}{34650} a^{7} - \frac{3694}{17325} a^{6} - \frac{6847}{69300} a^{5} - \frac{173}{1260} a^{4} + \frac{601}{3300} a^{3} - \frac{1933}{7700} a^{2} - \frac{292}{1925} a + \frac{529}{7700}$, $\frac{1}{51736849281468901350133959918600} a^{19} - \frac{34389803938588224481893767}{12934212320367225337533489979650} a^{18} + \frac{15496119064666351404963148373}{2069473971258756054005358396744} a^{17} - \frac{18968004229862850530833752989}{1847744617195317905361927139950} a^{16} + \frac{12417590401447105787471134897}{7390978468781271621447708559800} a^{15} - \frac{270728624151181540391349563827}{51736849281468901350133959918600} a^{14} + \frac{1228061962073951120254857601}{783891655779831838638393332100} a^{13} + \frac{27300482999980651500662357011}{1724561642715630045004465330620} a^{12} + \frac{34221919612322216281694417271}{5748538809052100150014884435400} a^{11} - \frac{690220478970841724121915307129}{25868424640734450675066979959300} a^{10} + \frac{779947115947731024286010225633}{4703349934678991031830359992600} a^{9} + \frac{2825098311508692934087862187163}{25868424640734450675066979959300} a^{8} + \frac{615143416781423841842376209999}{1293421232036722533753348997965} a^{7} - \frac{17235783086352865225538641912411}{51736849281468901350133959918600} a^{6} + \frac{1043592958571669742441191699843}{3695489234390635810723854279900} a^{5} + \frac{1162823854473258139046876327311}{8622808213578150225022326653100} a^{4} - \frac{2123100131452727777349727449259}{4311404106789075112511163326550} a^{3} - \frac{482021983424925468857469963323}{3449123285431260090008930661240} a^{2} + \frac{2741469429187107411242702261837}{5748538809052100150014884435400} a + \frac{2794904583631698534113803095871}{5748538809052100150014884435400}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1820507440260 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 100 |
| The 10 conjugacy class representatives for $C_5:F_5$ |
| Character table for $C_5:F_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{15})^+\), 10.10.322143585205078125.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 20 sibling: | data not computed |
| Degree 25 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{5}$ | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 5 | Data not computed | ||||||
| $19$ | 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.10.8.1 | $x^{10} - 209 x^{5} + 11552$ | $5$ | $2$ | $8$ | $D_5$ | $[\ ]_{5}^{2}$ | |