Normalized defining polynomial
\( x^{20} - 75 x^{18} + 2250 x^{16} - 120 x^{15} - 34875 x^{14} + 6600 x^{13} + 300375 x^{12} - 127800 x^{11} - 1431615 x^{10} + 1080000 x^{9} + 3435750 x^{8} - 3948750 x^{7} - 2860875 x^{6} + 5261850 x^{5} - 421875 x^{4} - 2079000 x^{3} + 877500 x^{2} - 54000 x - 3600 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(46184121251106262207031250000000000000000=2^{16}\cdot 3^{18}\cdot 5^{39}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $107.95$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{15} a^{10}$, $\frac{1}{15} a^{11}$, $\frac{1}{15} a^{12}$, $\frac{1}{15} a^{13}$, $\frac{1}{15} a^{14}$, $\frac{1}{15} a^{15}$, $\frac{1}{15} a^{16}$, $\frac{1}{30} a^{17} - \frac{1}{30} a^{15} - \frac{1}{30} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{85800} a^{18} - \frac{47}{8580} a^{17} - \frac{1}{440} a^{16} - \frac{139}{8580} a^{15} + \frac{217}{8580} a^{14} + \frac{23}{4290} a^{13} - \frac{149}{5720} a^{12} + \frac{53}{1716} a^{11} - \frac{1}{104} a^{10} - \frac{7}{572} a^{9} - \frac{1953}{5720} a^{8} - \frac{85}{572} a^{7} - \frac{267}{572} a^{6} + \frac{141}{572} a^{5} + \frac{259}{1144} a^{4} - \frac{81}{286} a^{3} - \frac{485}{1144} a^{2} - \frac{229}{572} a + \frac{15}{286}$, $\frac{1}{147127874105097376167897963600} a^{19} - \frac{21580010829951202453271}{6130328087712390673662415150} a^{18} + \frac{317703034855195445501294213}{29425574821019475233579592720} a^{17} + \frac{1457319711827149742156001}{55730255342839915215112865} a^{16} + \frac{428983434632562695633706899}{14712787410509737616789796360} a^{15} + \frac{17705329945120613192029478}{613032808771239067366241515} a^{14} - \frac{292894537518144272493649661}{9808524940339825077859864240} a^{13} + \frac{507298104857607025290488}{167190766028519745645338595} a^{12} + \frac{316290097397655934309581381}{9808524940339825077859864240} a^{11} - \frac{61803360133751482186966549}{3678196852627434404197449090} a^{10} + \frac{3175056774134619987587478467}{9808524940339825077859864240} a^{9} - \frac{18779249717759313000196268}{55730255342839915215112865} a^{8} - \frac{27353940252426316341307797}{75450191848767885214306648} a^{7} + \frac{4942765633611215346844055}{980852494033982507785986424} a^{6} - \frac{717558652260491158121218393}{1961704988067965015571972848} a^{5} + \frac{456089136101740565686248455}{980852494033982507785986424} a^{4} - \frac{619778835005437642454612477}{1961704988067965015571972848} a^{3} + \frac{43134324948985822360903987}{122606561754247813473248303} a^{2} + \frac{46332371512547206819621377}{122606561754247813473248303} a + \frac{53894859271763444637497079}{245213123508495626946496606}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 128509830940000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_5:F_5$ (as 20T49):
| A solvable group of order 200 |
| The 20 conjugacy class representatives for $C_2\times C_5:F_5$ |
| Character table for $C_2\times C_5:F_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{15})^+\), 10.10.32036132812500000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||