Normalized defining polynomial
\( x^{20} - 4 x^{19} - 63 x^{18} + 270 x^{17} + 1426 x^{16} - 6704 x^{15} - 14858 x^{14} + 81952 x^{13} + 68447 x^{12} - 533244 x^{11} - 58627 x^{10} + 1820396 x^{9} - 439446 x^{8} - 3049052 x^{7} + 801892 x^{6} + 2635222 x^{5} - 246308 x^{4} - 1037404 x^{3} - 147832 x^{2} + 66168 x + 7604 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4527516723638915422730250000000000000000=2^{16}\cdot 3^{16}\cdot 5^{18}\cdot 29^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $96.12$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5}$, $\frac{1}{10} a^{13} + \frac{1}{5} a^{12} + \frac{1}{5} a^{10} - \frac{1}{5} a^{9} + \frac{2}{5} a^{8} + \frac{1}{5} a^{7} + \frac{2}{5} a^{6} + \frac{3}{10} a^{5} - \frac{2}{5} a^{4} + \frac{2}{5} a^{3} - \frac{2}{5} a^{2} - \frac{1}{5} a - \frac{1}{5}$, $\frac{1}{10} a^{14} + \frac{1}{10} a^{12} + \frac{1}{5} a^{11} - \frac{1}{10} a^{10} - \frac{1}{5} a^{9} - \frac{1}{10} a^{8} + \frac{1}{5} a^{4} - \frac{1}{5} a^{3} - \frac{2}{5} a^{2} + \frac{1}{5} a + \frac{2}{5}$, $\frac{1}{150} a^{15} + \frac{1}{25} a^{14} + \frac{1}{75} a^{13} + \frac{1}{6} a^{12} + \frac{1}{150} a^{11} - \frac{11}{150} a^{10} + \frac{7}{30} a^{9} + \frac{1}{50} a^{8} + \frac{16}{75} a^{7} + \frac{23}{50} a^{6} - \frac{1}{30} a^{5} - \frac{32}{75} a^{4} + \frac{3}{25} a^{3} + \frac{7}{75} a^{2} + \frac{37}{75} a - \frac{29}{75}$, $\frac{1}{150} a^{16} - \frac{2}{75} a^{14} - \frac{1}{75} a^{13} + \frac{1}{150} a^{12} - \frac{16}{75} a^{11} - \frac{17}{75} a^{10} + \frac{21}{50} a^{9} + \frac{37}{75} a^{8} + \frac{12}{25} a^{7} + \frac{23}{75} a^{6} + \frac{71}{150} a^{5} + \frac{12}{25} a^{4} - \frac{32}{75} a^{3} - \frac{7}{15} a^{2} + \frac{19}{75} a + \frac{8}{25}$, $\frac{1}{1050} a^{17} + \frac{1}{350} a^{16} + \frac{1}{1050} a^{15} + \frac{23}{525} a^{14} - \frac{1}{105} a^{13} + \frac{57}{350} a^{12} - \frac{43}{210} a^{11} + \frac{71}{1050} a^{10} - \frac{57}{175} a^{9} + \frac{24}{175} a^{8} - \frac{254}{525} a^{7} - \frac{331}{1050} a^{6} + \frac{43}{210} a^{5} + \frac{17}{175} a^{4} + \frac{79}{525} a^{3} + \frac{23}{175} a^{2} + \frac{23}{75} a + \frac{152}{525}$, $\frac{1}{54367950} a^{18} + \frac{6481}{54367950} a^{17} + \frac{42782}{27183975} a^{16} + \frac{8441}{2588950} a^{15} + \frac{35283}{18122650} a^{14} + \frac{107006}{27183975} a^{13} - \frac{2985223}{54367950} a^{12} - \frac{311401}{1553370} a^{11} - \frac{1102459}{18122650} a^{10} - \frac{133663}{310674} a^{9} - \frac{25962439}{54367950} a^{8} + \frac{13406}{1294475} a^{7} + \frac{22037329}{54367950} a^{6} - \frac{4407394}{9061325} a^{5} + \frac{11075072}{27183975} a^{4} + \frac{9629506}{27183975} a^{3} - \frac{861526}{9061325} a^{2} + \frac{839518}{5436795} a + \frac{3443718}{9061325}$, $\frac{1}{91987780090053748126494450} a^{19} - \frac{745916708105752121}{91987780090053748126494450} a^{18} + \frac{1407946293789423602631}{15331296681675624687749075} a^{17} - \frac{133772798174627975294}{505427363132163451244475} a^{16} + \frac{126382372400658278271271}{91987780090053748126494450} a^{15} - \frac{140615261477172284585837}{3679511203602149925059778} a^{14} - \frac{1107593237309198513665667}{30662593363351249375498150} a^{13} - \frac{1278308967019800590446337}{6570555720718124866178175} a^{12} - \frac{7263754190178192059447417}{30662593363351249375498150} a^{11} + \frac{16277934447946620589059}{438037048047874991078545} a^{10} + \frac{11800246817419812328121053}{30662593363351249375498150} a^{9} + \frac{237225729855011946212648}{938650817245446409454025} a^{8} + \frac{11308592375839377503102479}{30662593363351249375498150} a^{7} - \frac{1570616104184115243449899}{15331296681675624687749075} a^{6} - \frac{14185478067000420832727753}{45993890045026874063247225} a^{5} + \frac{6525474955859563586226236}{15331296681675624687749075} a^{4} + \frac{1534572752451600284436289}{3537991541925144158711325} a^{3} + \frac{560401976783789579667659}{15331296681675624687749075} a^{2} - \frac{12412757765169789662341489}{45993890045026874063247225} a + \frac{84664511691096174290279}{312883605748482136484675}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 42038324782300 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$D_5\wr C_2$ (as 20T50):
| A solvable group of order 200 |
| The 14 conjugacy class representatives for $D_5\wr C_2$ |
| Character table for $D_5\wr C_2$ |
Intermediate fields
| \(\Q(\sqrt{29}) \), \(\Q(\sqrt{145}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{5}, \sqrt{29})\), 10.10.538294594356000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 25 sibling: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{5}$ | R | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.8.1 | $x^{10} - 2 x^{5} + 4$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 2.10.8.1 | $x^{10} - 2 x^{5} + 4$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| $3$ | 3.10.8.1 | $x^{10} - 3 x^{5} + 18$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 3.10.8.1 | $x^{10} - 3 x^{5} + 18$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.10.13.2 | $x^{10} + 10 x^{4} + 5$ | $10$ | $1$ | $13$ | $D_{10}$ | $[3/2]_{2}^{2}$ | |
| $29$ | 29.2.1.1 | $x^{2} - 29$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 29.2.1.1 | $x^{2} - 29$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |