Normalized defining polynomial
\( x^{20} - 70 x^{18} + 1899 x^{16} - 25784 x^{14} + 191379 x^{12} - 811774 x^{10} + 1994469 x^{8} - 2767108 x^{6} + 1987084 x^{4} - 583424 x^{2} + 15376 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4510514237834618843771703646681663799296=2^{24}\cdot 7^{12}\cdot 13^{8}\cdot 47^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $96.10$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 13, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{8} a^{8} - \frac{1}{4} a^{6} - \frac{1}{8} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{8} a^{9} - \frac{1}{4} a^{6} + \frac{1}{8} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{16} a^{10} - \frac{1}{16} a^{9} - \frac{1}{8} a^{7} - \frac{1}{16} a^{6} + \frac{1}{16} a^{5} - \frac{1}{4} a^{4} + \frac{3}{8} a^{3} + \frac{1}{4} a^{2} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{16} a^{11} - \frac{1}{16} a^{9} + \frac{1}{16} a^{7} + \frac{1}{16} a^{5} - \frac{1}{4} a^{4} + \frac{1}{8} a^{3} - \frac{1}{4} a^{2} + \frac{1}{4} a$, $\frac{1}{16} a^{12} - \frac{1}{16} a^{9} - \frac{1}{16} a^{8} - \frac{1}{8} a^{7} - \frac{1}{4} a^{6} - \frac{3}{16} a^{5} - \frac{3}{8} a^{3} + \frac{1}{4} a^{2} - \frac{1}{4} a$, $\frac{1}{32} a^{13} - \frac{1}{32} a^{11} - \frac{1}{32} a^{9} + \frac{1}{32} a^{7} - \frac{1}{4} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{416} a^{14} - \frac{1}{32} a^{12} - \frac{3}{416} a^{10} - \frac{1}{16} a^{9} + \frac{1}{416} a^{8} - \frac{1}{8} a^{7} - \frac{47}{208} a^{6} + \frac{1}{16} a^{5} + \frac{5}{104} a^{4} + \frac{3}{8} a^{3} + \frac{21}{52} a^{2} + \frac{1}{4} a - \frac{4}{13}$, $\frac{1}{832} a^{15} - \frac{1}{832} a^{14} - \frac{1}{64} a^{13} + \frac{1}{64} a^{12} + \frac{23}{832} a^{11} - \frac{23}{832} a^{10} + \frac{1}{832} a^{9} - \frac{1}{832} a^{8} + \frac{11}{104} a^{7} - \frac{11}{104} a^{6} + \frac{31}{208} a^{5} - \frac{31}{208} a^{4} + \frac{17}{52} a^{3} - \frac{17}{52} a^{2} + \frac{5}{52} a - \frac{5}{52}$, $\frac{1}{78208} a^{16} - \frac{3}{39104} a^{14} + \frac{581}{19552} a^{12} + \frac{393}{39104} a^{10} - \frac{1}{16} a^{9} + \frac{407}{78208} a^{8} - \frac{1}{8} a^{7} + \frac{4085}{19552} a^{6} - \frac{3}{16} a^{5} - \frac{807}{19552} a^{4} + \frac{1}{8} a^{3} - \frac{913}{2444} a^{2} - \frac{1}{4} a + \frac{1751}{4888}$, $\frac{1}{78208} a^{17} - \frac{3}{39104} a^{15} - \frac{15}{9776} a^{13} - \frac{829}{39104} a^{11} + \frac{2851}{78208} a^{9} - \frac{6}{611} a^{7} + \frac{4081}{19552} a^{5} - \frac{151}{1222} a^{3} + \frac{529}{4888} a - \frac{1}{2}$, $\frac{1}{696460540672} a^{18} - \frac{1923843}{696460540672} a^{16} - \frac{363034259}{348230270336} a^{14} + \frac{3383978779}{348230270336} a^{12} + \frac{11447550901}{696460540672} a^{10} - \frac{6736153839}{696460540672} a^{8} + \frac{802801309}{10882195948} a^{6} - \frac{1}{4} a^{5} + \frac{42298931371}{174115135168} a^{4} - \frac{1}{4} a^{3} + \frac{16624388111}{43528783792} a^{2} - \frac{1}{2} a - \frac{6620947595}{43528783792}$, $\frac{1}{43180553521664} a^{19} - \frac{1}{1392921081344} a^{18} + \frac{131654667}{43180553521664} a^{17} - \frac{6981391}{1392921081344} a^{16} - \frac{9971781745}{21590276760832} a^{15} - \frac{447342035}{696460540672} a^{14} - \frac{331096610261}{21590276760832} a^{13} - \frac{2849664739}{696460540672} a^{12} + \frac{1042264007337}{43180553521664} a^{11} - \frac{13424512849}{1392921081344} a^{10} + \frac{1857423195083}{43180553521664} a^{9} + \frac{1437539609}{1392921081344} a^{8} - \frac{592574796687}{5397569190208} a^{7} + \frac{38589094781}{174115135168} a^{6} - \frac{1876966005543}{10795138380416} a^{5} + \frac{43574240091}{348230270336} a^{4} + \frac{3747419747}{2698784595104} a^{3} + \frac{25586421049}{87057567584} a^{2} + \frac{831655444527}{2698784595104} a - \frac{39107428995}{87057567584}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 291227711962000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 360 |
| The 7 conjugacy class representatives for $A_6$ |
| Character table for $A_6$ |
Intermediate fields
| 10.10.67160362103212478464.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 siblings: | data not computed |
| Degree 10 sibling: | data not computed |
| Degree 15 siblings: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 36 sibling: | data not computed |
| Degree 40 sibling: | data not computed |
| Degree 45 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ |
| 2.4.6.8 | $x^{4} + 2 x^{3} + 2$ | $4$ | $1$ | $6$ | $D_{4}$ | $[2, 2]^{2}$ | |
| 2.4.6.8 | $x^{4} + 2 x^{3} + 2$ | $4$ | $1$ | $6$ | $D_{4}$ | $[2, 2]^{2}$ | |
| 2.4.4.3 | $x^{4} + 2 x^{2} + 4 x + 4$ | $2$ | $2$ | $4$ | $D_{4}$ | $[2, 2]^{2}$ | |
| 2.4.4.3 | $x^{4} + 2 x^{2} + 4 x + 4$ | $2$ | $2$ | $4$ | $D_{4}$ | $[2, 2]^{2}$ | |
| $7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| $13$ | 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 47 | Data not computed | ||||||