Normalized defining polynomial
\( x^{20} - 273 x^{18} + 28558 x^{16} - 1477318 x^{14} + 40983526 x^{12} - 625485945 x^{10} + 5158670340 x^{8} - 21487038030 x^{6} + 36848807880 x^{4} - 8542596545 x^{2} + 493123805 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(449447128722439644559460125472000000000000000=2^{20}\cdot 5^{15}\cdot 11^{4}\cdot 9931^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $170.86$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11, 9931$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{61} a^{16} + \frac{26}{61} a^{14} - \frac{30}{61} a^{12} + \frac{4}{61} a^{10} - \frac{22}{61} a^{8} - \frac{11}{61} a^{6} + \frac{29}{61} a^{4} + \frac{9}{61} a^{2} - \frac{2}{61}$, $\frac{1}{61} a^{17} + \frac{26}{61} a^{15} - \frac{30}{61} a^{13} + \frac{4}{61} a^{11} - \frac{22}{61} a^{9} - \frac{11}{61} a^{7} + \frac{29}{61} a^{5} + \frac{9}{61} a^{3} - \frac{2}{61} a$, $\frac{1}{17002327077530549509679538928592588265123177041887} a^{18} - \frac{127784418804674509703370906578996487513194947833}{17002327077530549509679538928592588265123177041887} a^{16} + \frac{6783977760468883021839553706073658080079320546}{278726673402140155896385884075288332215134049867} a^{14} - \frac{299532008279314970535473177010155374239168246162}{17002327077530549509679538928592588265123177041887} a^{12} - \frac{1112682038345531673223753541630441265542165532295}{17002327077530549509679538928592588265123177041887} a^{10} - \frac{4787004390342987133142354085187945381084896752569}{17002327077530549509679538928592588265123177041887} a^{8} + \frac{4478361830196607493753606312937494108948225709891}{17002327077530549509679538928592588265123177041887} a^{6} + \frac{1662648325003660194620294346222221908020952638467}{17002327077530549509679538928592588265123177041887} a^{4} - \frac{77215682153405661641005542355736756381766462418}{17002327077530549509679538928592588265123177041887} a^{2} + \frac{9843821162101741386201886615612276756826286}{1712045823938228729199429959580363333513561277}$, $\frac{1}{17002327077530549509679538928592588265123177041887} a^{19} - \frac{127784418804674509703370906578996487513194947833}{17002327077530549509679538928592588265123177041887} a^{17} + \frac{6783977760468883021839553706073658080079320546}{278726673402140155896385884075288332215134049867} a^{15} - \frac{299532008279314970535473177010155374239168246162}{17002327077530549509679538928592588265123177041887} a^{13} - \frac{1112682038345531673223753541630441265542165532295}{17002327077530549509679538928592588265123177041887} a^{11} - \frac{4787004390342987133142354085187945381084896752569}{17002327077530549509679538928592588265123177041887} a^{9} + \frac{4478361830196607493753606312937494108948225709891}{17002327077530549509679538928592588265123177041887} a^{7} + \frac{1662648325003660194620294346222221908020952638467}{17002327077530549509679538928592588265123177041887} a^{5} - \frac{77215682153405661641005542355736756381766462418}{17002327077530549509679538928592588265123177041887} a^{3} + \frac{9843821162101741386201886615612276756826286}{1712045823938228729199429959580363333513561277} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 12375258313100000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 3686400 |
| The 180 conjugacy class representatives for t20n1010 are not computed |
| Character table for t20n1010 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.10.932312193828125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | R | $20$ | R | $20$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | $20$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{6}$ | $20$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.12.11.2 | $x^{12} - 20$ | $12$ | $1$ | $11$ | $S_3 \times C_4$ | $[\ ]_{12}^{2}$ | |
| $11$ | 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.10.0.1 | $x^{10} + x^{2} - x + 6$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| 9931 | Data not computed | ||||||