Normalized defining polynomial
\( x^{20} - 3300 x^{18} + 4470103 x^{16} - 3274244028 x^{14} + 1432387550077 x^{12} - 389915282997834 x^{10} + 66816613758241721 x^{8} - 7127823539752640054 x^{6} + 455133581914702571045 x^{4} - 15821873902801761390288 x^{2} + 229291601162825526179888 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(43638965741625483308617553270102089623548879194554368=2^{36}\cdot 11^{10}\cdot 83^{7}\cdot 983^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $428.54$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 83, 983$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{11} a^{2}$, $\frac{1}{11} a^{3}$, $\frac{1}{121} a^{4}$, $\frac{1}{121} a^{5}$, $\frac{1}{1331} a^{6}$, $\frac{1}{1331} a^{7}$, $\frac{1}{14641} a^{8}$, $\frac{1}{14641} a^{9}$, $\frac{1}{161051} a^{10}$, $\frac{1}{161051} a^{11}$, $\frac{1}{1771561} a^{12}$, $\frac{1}{1771561} a^{13}$, $\frac{1}{19487171} a^{14}$, $\frac{1}{19487171} a^{15}$, $\frac{1}{17489326741909} a^{16} - \frac{300}{1589938794719} a^{14} + \frac{36943}{144539890429} a^{12} - \frac{12318}{13139990039} a^{10} + \frac{8786}{1194544549} a^{8} + \frac{4852}{108594959} a^{6} + \frac{722}{897479} a^{4} - \frac{38}{913} a^{2}$, $\frac{1}{34978653483818} a^{17} - \frac{150}{1589938794719} a^{15} + \frac{36943}{289079780858} a^{13} - \frac{6159}{13139990039} a^{11} - \frac{72803}{2389089098} a^{9} + \frac{2426}{108594959} a^{7} - \frac{73647}{19744538} a^{5} - \frac{19}{913} a^{3} - \frac{1}{2} a$, $\frac{1}{44344361986259831262418543689758729061757222920703823336} a^{18} - \frac{2176824199871455719770210505038817324446}{503913204389316264345665269201803739338150260462543447} a^{16} + \frac{139916126730954506703759179322897821703237253}{33316575496814298469134893831524214171117372592564856} a^{14} - \frac{1113701002031120156572463443699235155892772773}{4164571937101787308641861728940526771389671574070607} a^{12} - \frac{5701254249195226180401679614834047054574580027}{3028779590619481679012263075593110379192488417505896} a^{10} - \frac{93020709134190052306217468480861603973349655}{12515618143055709417406045766913679252861522386388} a^{8} - \frac{5008193081182580779018568411703924626887772183}{25031236286111418834812091533827358505723044772776} a^{6} - \frac{2956890239907361488606758565926096525655419123}{1137783467550519037946004160628516295714683853308} a^{4} + \frac{98541290923908695008494722085803833908681}{2535509950763235770298812920700130689887304} a^{2} - \frac{161851234871776281882352562888750116763}{694279833177227757475030920235523190002}$, $\frac{1}{88688723972519662524837087379517458123514445841407646672} a^{19} - \frac{1088412099935727859885105252519408662223}{503913204389316264345665269201803739338150260462543447} a^{17} - \frac{17267260912579649813795907880812029675556685313}{732964660929914566320967664293532711764582197036426832} a^{15} + \frac{618545643148199258434846956485626529196882057}{4164571937101787308641861728940526771389671574070607} a^{13} + \frac{13105084057424923207135579238529858659717715069}{6057559181238963358024526151186220758384976835011792} a^{11} + \frac{8379941352833984118400237273392475213439301343}{275343599147225607182933006872100943562953492500536} a^{9} - \frac{5008193081182580779018568411703924626887772183}{50062472572222837669624183067654717011446089545552} a^{7} - \frac{2956890239907361488606758565926096525655419123}{2275566935101038075892008321257032591429367706616} a^{5} + \frac{98541290923908695008494722085803833908681}{5071019901526471540597625841400261379774608} a^{3} - \frac{161851234871776281882352562888750116763}{1388559666354455514950061840471046380004} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 76608546955100000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 122880 |
| The 138 conjugacy class representatives for t20n807 are not computed |
| Character table for t20n807 is not computed |
Intermediate fields
| 5.5.81589.1, 10.10.1704131819776.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }{,}\,{\href{/LocalNumberField/3.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }{,}\,{\href{/LocalNumberField/5.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ | R | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | $16{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.8.0.1}{8} }$ | ${\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.8.0.1}{8} }$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | $16{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.8.0.1}{8} }$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 11 | Data not computed | ||||||
| $83$ | 83.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 83.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 83.4.2.1 | $x^{4} + 249 x^{2} + 27556$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 83.4.2.1 | $x^{4} + 249 x^{2} + 27556$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 83.6.3.1 | $x^{6} - 166 x^{4} + 6889 x^{2} - 5146083$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 983 | Data not computed | ||||||