Normalized defining polynomial
\( x^{20} - x^{19} - 60 x^{18} + 59 x^{17} + 1465 x^{16} - 1407 x^{15} - 18966 x^{14} + 17616 x^{13} + 142122 x^{12} - 125226 x^{11} - 630959 x^{10} + 509336 x^{9} + 1631687 x^{8} - 1138974 x^{7} - 2320717 x^{6} + 1291062 x^{5} + 1584530 x^{4} - 656657 x^{3} - 352368 x^{2} + 129857 x - 4099 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(42913439156921905845805508304306640625=5^{10}\cdot 41^{19}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $76.14$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(205=5\cdot 41\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{205}(1,·)$, $\chi_{205}(66,·)$, $\chi_{205}(9,·)$, $\chi_{205}(74,·)$, $\chi_{205}(141,·)$, $\chi_{205}(144,·)$, $\chi_{205}(81,·)$, $\chi_{205}(146,·)$, $\chi_{205}(84,·)$, $\chi_{205}(86,·)$, $\chi_{205}(31,·)$, $\chi_{205}(16,·)$, $\chi_{205}(39,·)$, $\chi_{205}(169,·)$, $\chi_{205}(49,·)$, $\chi_{205}(114,·)$, $\chi_{205}(51,·)$, $\chi_{205}(201,·)$, $\chi_{205}(184,·)$, $\chi_{205}(159,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{14} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{14} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{146} a^{17} + \frac{3}{146} a^{16} + \frac{2}{73} a^{15} + \frac{5}{73} a^{14} + \frac{14}{73} a^{13} + \frac{10}{73} a^{12} - \frac{3}{146} a^{11} + \frac{23}{73} a^{10} + \frac{26}{73} a^{9} - \frac{53}{146} a^{8} - \frac{29}{146} a^{7} - \frac{41}{146} a^{6} - \frac{21}{73} a^{5} - \frac{7}{146} a^{4} + \frac{13}{146} a^{3} - \frac{25}{146} a^{2} - \frac{1}{73} a - \frac{21}{73}$, $\frac{1}{146} a^{18} - \frac{5}{146} a^{16} - \frac{1}{73} a^{15} - \frac{1}{73} a^{14} - \frac{32}{73} a^{13} - \frac{63}{146} a^{12} + \frac{55}{146} a^{11} + \frac{30}{73} a^{10} - \frac{63}{146} a^{9} - \frac{8}{73} a^{8} + \frac{23}{73} a^{7} - \frac{65}{146} a^{6} - \frac{27}{146} a^{5} + \frac{17}{73} a^{4} - \frac{32}{73} a^{3} - \frac{1}{2} a^{2} - \frac{18}{73} a - \frac{10}{73}$, $\frac{1}{1488964253466800176022694055635917724026774} a^{19} + \frac{882832655142142848940726436917402343755}{1488964253466800176022694055635917724026774} a^{18} - \frac{2430027096676466838346054663438259950475}{1488964253466800176022694055635917724026774} a^{17} + \frac{6174420776748211914229476345557635815557}{1488964253466800176022694055635917724026774} a^{16} - \frac{16298950222289947961947157338680917670114}{744482126733400088011347027817958862013387} a^{15} + \frac{317449743589993067611314756891277110428793}{744482126733400088011347027817958862013387} a^{14} + \frac{583119269448978213759612970849019625437903}{1488964253466800176022694055635917724026774} a^{13} + \frac{120175109252251468181692305845291045205074}{744482126733400088011347027817958862013387} a^{12} - \frac{531089740490527889477851113094644890147393}{1488964253466800176022694055635917724026774} a^{11} - \frac{95937908312732679744959824232565848948889}{1488964253466800176022694055635917724026774} a^{10} + \frac{739874537223038811130241358937209675066929}{1488964253466800176022694055635917724026774} a^{9} + \frac{219966358570014607122480457003670757956963}{744482126733400088011347027817958862013387} a^{8} - \frac{311012961310511433443899555196077895569759}{1488964253466800176022694055635917724026774} a^{7} - \frac{245144619677826987895565026450969923601649}{744482126733400088011347027817958862013387} a^{6} + \frac{220551329788977977758728465702190491062409}{1488964253466800176022694055635917724026774} a^{5} + \frac{29539479395650201230121020925559079666348}{744482126733400088011347027817958862013387} a^{4} + \frac{393456677060567756996407586464352020001181}{1488964253466800176022694055635917724026774} a^{3} - \frac{536187438310334414760665622019775240360757}{1488964253466800176022694055635917724026774} a^{2} - \frac{11518971683112395942581294486805459479503}{744482126733400088011347027817958862013387} a - \frac{255027005387814829890443481073541108076888}{744482126733400088011347027817958862013387}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1163330087490 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 20 |
| The 20 conjugacy class representatives for $C_{20}$ |
| Character table for $C_{20}$ |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.4.1723025.1, 5.5.2825761.1, 10.10.327381934393961.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ | R | $20$ | $20$ | $20$ | $20$ | $20$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | $20$ | $20$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.10.5.2 | $x^{10} - 625 x^{2} + 6250$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 5.10.5.2 | $x^{10} - 625 x^{2} + 6250$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 41 | Data not computed | ||||||