Normalized defining polynomial
\( x^{20} - 10 x^{19} - 6 x^{18} + 318 x^{17} - 493 x^{16} - 3820 x^{15} + 10188 x^{14} + 19738 x^{13} - 85710 x^{12} - 16828 x^{11} + 360010 x^{10} - 260128 x^{9} - 700797 x^{8} + 1088072 x^{7} + 269898 x^{6} - 1531518 x^{5} + 832863 x^{4} + 491158 x^{3} - 732298 x^{2} + 303198 x - 43823 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(42390388623295510152536086938648576=2^{30}\cdot 3^{10}\cdot 401^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $53.87$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{13} + \frac{1}{3} a^{11} - \frac{1}{3} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{11} + \frac{1}{3} a^{8} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{15} + \frac{1}{3} a^{10} + \frac{1}{3} a^{8} + \frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{9} a^{16} + \frac{1}{9} a^{15} - \frac{1}{9} a^{13} - \frac{1}{9} a^{10} + \frac{2}{9} a^{8} - \frac{4}{9} a^{7} + \frac{2}{9} a^{6} - \frac{2}{9} a^{5} + \frac{4}{9} a^{4} - \frac{4}{9} a^{3} + \frac{1}{9} a^{2} + \frac{4}{9} a - \frac{2}{9}$, $\frac{1}{207} a^{17} - \frac{5}{207} a^{16} + \frac{5}{69} a^{15} - \frac{1}{207} a^{14} - \frac{8}{69} a^{12} + \frac{20}{207} a^{11} + \frac{9}{23} a^{10} + \frac{74}{207} a^{9} - \frac{4}{207} a^{8} - \frac{88}{207} a^{7} - \frac{62}{207} a^{6} - \frac{32}{207} a^{5} + \frac{1}{9} a^{4} - \frac{74}{207} a^{3} + \frac{31}{207} a^{2} + \frac{4}{207} a - \frac{2}{23}$, $\frac{1}{621} a^{18} + \frac{13}{621} a^{16} - \frac{41}{621} a^{15} - \frac{5}{621} a^{14} + \frac{91}{621} a^{13} - \frac{100}{621} a^{12} - \frac{95}{621} a^{11} - \frac{1}{23} a^{10} + \frac{11}{23} a^{9} - \frac{131}{621} a^{8} + \frac{32}{207} a^{7} - \frac{158}{621} a^{6} - \frac{61}{207} a^{5} - \frac{74}{621} a^{4} - \frac{17}{621} a^{3} - \frac{232}{621} a^{2} - \frac{113}{621} a - \frac{67}{621}$, $\frac{1}{3386245258416031983} a^{19} + \frac{150603305543722}{376249473157336887} a^{18} + \frac{503945606182495}{3386245258416031983} a^{17} - \frac{122547834880053323}{3386245258416031983} a^{16} + \frac{17740928023646692}{3386245258416031983} a^{15} + \frac{30765894409294552}{3386245258416031983} a^{14} - \frac{31496889965117680}{3386245258416031983} a^{13} + \frac{186520069817362363}{3386245258416031983} a^{12} - \frac{187875014940987595}{376249473157336887} a^{11} + \frac{51319294872956063}{376249473157336887} a^{10} + \frac{393257881098197950}{3386245258416031983} a^{9} + \frac{410275618826246243}{1128748419472010661} a^{8} + \frac{408824853387784132}{3386245258416031983} a^{7} + \frac{377573196541052102}{1128748419472010661} a^{6} + \frac{1090362372671817916}{3386245258416031983} a^{5} + \frac{654855572990190025}{3386245258416031983} a^{4} + \frac{742879527378996395}{3386245258416031983} a^{3} - \frac{269557958340592340}{3386245258416031983} a^{2} + \frac{276300143198330927}{3386245258416031983} a - \frac{29639401009434885}{125416491052445629}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 108189424779 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_2^4:D_5$ (as 20T73):
| A solvable group of order 320 |
| The 20 conjugacy class representatives for $C_2\times C_2^4:D_5$ |
| Character table for $C_2\times C_2^4:D_5$ |
Intermediate fields
| \(\Q(\sqrt{3}) \), 5.5.160801.1, 10.10.6434039469100032.1, 10.10.79432586038272.1, 10.10.2144679823033344.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 401 | Data not computed | ||||||