Normalized defining polynomial
\( x^{20} - 28 x^{18} + 315 x^{16} - 1876 x^{14} + 6591 x^{12} - 14324 x^{10} + 19459 x^{8} - 16156 x^{6} + 7690 x^{4} - 1840 x^{2} + 169 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(41925588122943302709337877643264=2^{40}\cdot 3^{10}\cdot 71^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $38.12$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 71$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{13} a^{17} + \frac{5}{13} a^{15} - \frac{1}{13} a^{13} + \frac{2}{13} a^{11} + \frac{1}{13} a^{9} - \frac{4}{13} a^{7} - \frac{4}{13} a^{5} + \frac{1}{13} a^{3} + \frac{1}{13} a$, $\frac{1}{97747} a^{18} - \frac{3778}{97747} a^{16} - \frac{5500}{97747} a^{14} - \frac{1493}{97747} a^{12} + \frac{33762}{97747} a^{10} - \frac{39459}{97747} a^{8} + \frac{17}{949} a^{6} - \frac{33357}{97747} a^{4} - \frac{19720}{97747} a^{2} - \frac{3563}{7519}$, $\frac{1}{97747} a^{19} + \frac{3741}{97747} a^{17} + \frac{32095}{97747} a^{15} - \frac{9012}{97747} a^{13} + \frac{48800}{97747} a^{11} - \frac{31940}{97747} a^{9} - \frac{275}{949} a^{7} + \frac{34314}{97747} a^{5} - \frac{12201}{97747} a^{3} - \frac{38800}{97747} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1771371001.17 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_{10}\times D_5$ (as 20T24):
| A solvable group of order 100 |
| The 40 conjugacy class representatives for $C_{10}\times D_5$ |
| Character table for $C_{10}\times D_5$ is not computed |
Intermediate fields
| \(\Q(\sqrt{6}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{2}, \sqrt{3})\), 10.10.6323239406592.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $71$ | 71.5.4.4 | $x^{5} + 568$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 71.5.0.1 | $x^{5} - x + 8$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 71.5.0.1 | $x^{5} - x + 8$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 71.5.4.4 | $x^{5} + 568$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |