Normalized defining polynomial
\( x^{20} - 90 x^{18} - 165 x^{17} + 2655 x^{16} + 8844 x^{15} - 23405 x^{14} - 124135 x^{13} + 25635 x^{12} + 705485 x^{11} + 462661 x^{10} - 1893595 x^{9} - 2174625 x^{8} + 2297075 x^{7} + 3851885 x^{6} - 700216 x^{5} - 2796615 x^{4} - 556105 x^{3} + 551050 x^{2} + 127380 x - 33329 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(41424612056406076855957508087158203125=5^{27}\cdot 11^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $76.01$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{15} - \frac{1}{2}$, $\frac{1}{12} a^{16} + \frac{1}{6} a^{15} + \frac{1}{12} a^{14} - \frac{5}{12} a^{13} + \frac{1}{12} a^{12} - \frac{1}{4} a^{11} + \frac{1}{12} a^{10} + \frac{1}{12} a^{9} - \frac{1}{4} a^{8} - \frac{5}{12} a^{7} + \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{12} a^{4} - \frac{5}{12} a^{3} - \frac{5}{12} a^{2} - \frac{1}{3} a + \frac{5}{12}$, $\frac{1}{12} a^{17} - \frac{1}{4} a^{15} - \frac{1}{12} a^{14} + \frac{5}{12} a^{13} + \frac{1}{12} a^{12} + \frac{1}{12} a^{11} + \frac{5}{12} a^{10} + \frac{1}{12} a^{9} - \frac{5}{12} a^{8} - \frac{5}{12} a^{7} - \frac{1}{4} a^{6} - \frac{1}{12} a^{5} + \frac{1}{4} a^{4} - \frac{1}{12} a^{3} - \frac{5}{12} a - \frac{1}{3}$, $\frac{1}{24} a^{18} - \frac{1}{24} a^{17} + \frac{1}{12} a^{15} - \frac{1}{8} a^{14} - \frac{7}{24} a^{13} - \frac{3}{8} a^{12} - \frac{5}{24} a^{11} - \frac{1}{24} a^{10} + \frac{3}{8} a^{9} + \frac{1}{8} a^{8} + \frac{11}{24} a^{7} - \frac{1}{24} a^{6} + \frac{7}{24} a^{5} + \frac{5}{24} a^{4} + \frac{5}{12} a^{3} + \frac{1}{6} a^{2} - \frac{11}{24} a + \frac{1}{24}$, $\frac{1}{4124392105563923353987372502249835405567384} a^{19} + \frac{13570441720466114045365160537944908927733}{1374797368521307784662457500749945135189128} a^{18} - \frac{21776235661690453797903575553592157700367}{687398684260653892331228750374972567594564} a^{17} - \frac{3354455925970633864096251802098034676509}{2062196052781961676993686251124917702783692} a^{16} + \frac{891817981771103138009235638339926637265}{1374797368521307784662457500749945135189128} a^{15} + \frac{227471419013371880004233202067326985501713}{1374797368521307784662457500749945135189128} a^{14} - \frac{463569950461014197649046558045195583749809}{1374797368521307784662457500749945135189128} a^{13} + \frac{169475037489789520405422573170123892583033}{4124392105563923353987372502249835405567384} a^{12} - \frac{1837983379970606259241098145997436826447091}{4124392105563923353987372502249835405567384} a^{11} - \frac{508013447622110600772234798872712131931603}{1374797368521307784662457500749945135189128} a^{10} - \frac{410740566239301321310780277651307363884253}{1374797368521307784662457500749945135189128} a^{9} - \frac{588441251221339439614082913585874169619905}{1374797368521307784662457500749945135189128} a^{8} + \frac{373594616688454975634918165878597259877553}{4124392105563923353987372502249835405567384} a^{7} - \frac{462119213682002572211724485993220540359225}{1374797368521307784662457500749945135189128} a^{6} + \frac{57198814431370530394607217174028547833055}{4124392105563923353987372502249835405567384} a^{5} - \frac{167335591922119572630838488795578041689023}{1031098026390980838496843125562458851391846} a^{4} - \frac{298527291170613095603487797911781206536643}{687398684260653892331228750374972567594564} a^{3} - \frac{1642890115014794032248456222589196130701315}{4124392105563923353987372502249835405567384} a^{2} - \frac{182774061561554054320427005822163742209321}{4124392105563923353987372502249835405567384} a - \frac{4193732915536902975804271371744706411975}{515549013195490419248421562781229425695923}$
Class group and class number
$C_{5}$, which has order $5$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 547793455064 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 8 conjugacy class representatives for $C_5:C_4$ |
| Character table for $C_5:C_4$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.15125.1, 5.5.228765625.1 x5, 10.10.261668555908203125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $11$ | 11.10.9.8 | $x^{10} + 33$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 11.10.9.8 | $x^{10} + 33$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |