Normalized defining polynomial
\( x^{20} - 5 x^{19} - 55 x^{18} + 265 x^{17} + 1145 x^{16} - 5278 x^{15} - 11255 x^{14} + 49775 x^{13} + 56205 x^{12} - 233775 x^{11} - 163635 x^{10} + 558275 x^{9} + 306525 x^{8} - 639230 x^{7} - 338365 x^{6} + 285219 x^{5} + 142945 x^{4} - 35290 x^{3} - 13110 x^{2} + 475 x + 139 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(413264041171139760315418243408203125=5^{26}\cdot 11^{4}\cdot 29^{5}\cdot 31^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $60.37$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 11, 29, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{3} a^{16} - \frac{1}{3} a^{14} + \frac{1}{3} a^{13} - \frac{1}{3} a^{12} + \frac{1}{3} a^{11} + \frac{1}{3} a^{10} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{17} - \frac{1}{3} a^{15} + \frac{1}{3} a^{14} - \frac{1}{3} a^{13} + \frac{1}{3} a^{12} + \frac{1}{3} a^{11} + \frac{1}{3} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{33} a^{18} - \frac{4}{33} a^{17} + \frac{4}{33} a^{16} - \frac{16}{33} a^{15} - \frac{16}{33} a^{14} + \frac{1}{33} a^{13} - \frac{8}{33} a^{12} - \frac{1}{3} a^{11} - \frac{1}{11} a^{10} + \frac{16}{33} a^{9} - \frac{7}{33} a^{8} - \frac{8}{33} a^{7} - \frac{10}{33} a^{6} + \frac{5}{33} a^{5} - \frac{1}{11} a^{4} - \frac{7}{33} a^{3} - \frac{3}{11} a^{2} - \frac{4}{11} a - \frac{5}{33}$, $\frac{1}{482606207696565385047693134695966379782428699} a^{19} + \frac{4982387895362027565082222543741382232347449}{482606207696565385047693134695966379782428699} a^{18} + \frac{657426748097137511237088492626618301396772}{11770883114550375245065686212096740970303139} a^{17} - \frac{4908137001892192180628538947393649741113647}{160868735898855128349231044898655459927476233} a^{16} - \frac{71731037120345546183539187243065750683940922}{160868735898855128349231044898655459927476233} a^{15} + \frac{19917036323548527237364133764931497024826181}{160868735898855128349231044898655459927476233} a^{14} - \frac{59542517907459261034032184307564790629089408}{482606207696565385047693134695966379782428699} a^{13} - \frac{79081731407665077864662370162498261444350138}{482606207696565385047693134695966379782428699} a^{12} - \frac{198527262092301214050670943384722117737774338}{482606207696565385047693134695966379782428699} a^{11} + \frac{31385899828546997259161376345759510364447498}{160868735898855128349231044898655459927476233} a^{10} - \frac{145117691158805851767934518556471426008996560}{482606207696565385047693134695966379782428699} a^{9} + \frac{203350086210408825786340550723988572328214381}{482606207696565385047693134695966379782428699} a^{8} + \frac{151850550113729299072063076300871558308788241}{482606207696565385047693134695966379782428699} a^{7} - \frac{15978093997957391326288814395938732113212085}{68943743956652197863956162099423768540346957} a^{6} + \frac{6449741492822975764763578289432426218418449}{43873291608778671367972103154178761798402609} a^{5} - \frac{2534689762837027317371858288197359478956260}{6267613086968381623996014736311251685486087} a^{4} - \frac{1283760372828522813321129079114373906596604}{14624430536259557122657367718059587266134203} a^{3} - \frac{232409420618273242796878513262155096274049355}{482606207696565385047693134695966379782428699} a^{2} + \frac{615357052743310662654739481483815651652221}{12374518146065779103787003453742727686728941} a + \frac{46017144906848834503423847808346960786755830}{160868735898855128349231044898655459927476233}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 304766298548 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5000 |
| The 230 conjugacy class representatives for t20n299 are not computed |
| Character table for t20n299 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.725.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{5}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{5}$ | $20$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | R | R | $20$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{10}$ | $20$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $11$ | 11.5.0.1 | $x^{5} + x^{2} - x + 5$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ |
| 11.5.4.2 | $x^{5} - 891$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.10.0.1 | $x^{10} + x^{2} - x + 6$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| $29$ | 29.10.5.2 | $x^{10} - 707281 x^{2} + 225622639$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 29.10.0.1 | $x^{10} + x^{2} - 2 x + 2$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| $31$ | $\Q_{31}$ | $x + 7$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{31}$ | $x + 7$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{31}$ | $x + 7$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{31}$ | $x + 7$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{31}$ | $x + 7$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 31.5.4.5 | $x^{5} - 74431$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 31.10.0.1 | $x^{10} - x + 11$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |