Normalized defining polynomial
\( x^{20} - 4 x^{19} - 70 x^{18} + 258 x^{17} + 1914 x^{16} - 6574 x^{15} - 25582 x^{14} + 84064 x^{13} + 169380 x^{12} - 566144 x^{11} - 486202 x^{10} + 1945052 x^{9} + 353024 x^{8} - 3209444 x^{7} + 582960 x^{6} + 2274052 x^{5} - 798688 x^{4} - 469792 x^{3} + 133648 x^{2} + 16872 x - 124 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4115394215817120555008000000000000000=2^{28}\cdot 5^{15}\cdot 3469^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $67.72$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 3469$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10}$, $\frac{1}{2} a^{11}$, $\frac{1}{2} a^{12}$, $\frac{1}{2} a^{13}$, $\frac{1}{2} a^{14}$, $\frac{1}{2} a^{15}$, $\frac{1}{2} a^{16}$, $\frac{1}{2} a^{17}$, $\frac{1}{2} a^{18}$, $\frac{1}{209461642619774446284958265448115270670319262} a^{19} - \frac{9517979354722555772276799381639401867053075}{104730821309887223142479132724057635335159631} a^{18} - \frac{16751593080519109979738295486521753878866998}{104730821309887223142479132724057635335159631} a^{17} + \frac{778397513521090524146931543982337966357631}{209461642619774446284958265448115270670319262} a^{16} - \frac{45113697401751332982682615292761411638254769}{209461642619774446284958265448115270670319262} a^{15} - \frac{43676092732613593749628121412705481952671487}{209461642619774446284958265448115270670319262} a^{14} - \frac{4533072288410355570987751424343631209734953}{104730821309887223142479132724057635335159631} a^{13} + \frac{481390747351669123568983868053190451355566}{104730821309887223142479132724057635335159631} a^{12} - \frac{31640029638704411842721259662017393472863873}{209461642619774446284958265448115270670319262} a^{11} + \frac{38885428048019395247661486532600071307725373}{209461642619774446284958265448115270670319262} a^{10} + \frac{40706500424032102818421733662138100199329934}{104730821309887223142479132724057635335159631} a^{9} - \frac{44393869692789351427034118964299765962446041}{104730821309887223142479132724057635335159631} a^{8} + \frac{32043407959340599361465367829800172685340332}{104730821309887223142479132724057635335159631} a^{7} + \frac{2058995135009927809284981431080238564552728}{104730821309887223142479132724057635335159631} a^{6} - \frac{48350227708313651664555087115408919906521596}{104730821309887223142479132724057635335159631} a^{5} - \frac{9150273115506894507989092639547556359721167}{104730821309887223142479132724057635335159631} a^{4} + \frac{15780346140888567772563108867100729532481049}{104730821309887223142479132724057635335159631} a^{3} - \frac{47429679054726442691278532043960200366825077}{104730821309887223142479132724057635335159631} a^{2} - \frac{16353611211394080053992438683368568160770032}{104730821309887223142479132724057635335159631} a + \frac{437133899738254745811354527723401138395067}{3378413590641523327176746216905085010811601}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 550729563654 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$D_5^2:C_4$ (as 20T94):
| A solvable group of order 400 |
| The 28 conjugacy class representatives for $D_5^2:C_4$ |
| Character table for $D_5^2:C_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.6938000.1, 10.10.9627168800000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | R | $20$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | $20$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | $20$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | $20$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 3469 | Data not computed | ||||||