Normalized defining polynomial
\( x^{20} - 8 x^{19} - 13 x^{18} + 254 x^{17} - 320 x^{16} - 2579 x^{15} + 6719 x^{14} + 7619 x^{13} - 39332 x^{12} + 13604 x^{11} + 77412 x^{10} - 67087 x^{9} - 57464 x^{8} + 71947 x^{7} + 14376 x^{6} - 25774 x^{5} - 3291 x^{4} + 3036 x^{3} + 850 x^{2} + 68 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(405914089364717749725605850283203125=5^{10}\cdot 29^{5}\cdot 331^{4}\cdot 641^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $60.31$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 29, 331, 641$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{317310706106319558925560181} a^{19} - \frac{97493047667646710737940975}{317310706106319558925560181} a^{18} + \frac{2024543212471461007590654}{317310706106319558925560181} a^{17} - \frac{5405596056288378095667726}{16700563479279976785555799} a^{16} + \frac{17646926341027076613033671}{317310706106319558925560181} a^{15} - \frac{26725668775585101586785252}{317310706106319558925560181} a^{14} - \frac{79636697749364969055046563}{317310706106319558925560181} a^{13} + \frac{56769544129179460690631241}{317310706106319558925560181} a^{12} + \frac{95078033540048373256689465}{317310706106319558925560181} a^{11} - \frac{3830588155907212131938556}{317310706106319558925560181} a^{10} + \frac{12149275822216367211048238}{317310706106319558925560181} a^{9} - \frac{85065813898227933743857975}{317310706106319558925560181} a^{8} + \frac{105532634994116732830007962}{317310706106319558925560181} a^{7} - \frac{151425442210972415014506522}{317310706106319558925560181} a^{6} - \frac{37974674658141546748731761}{317310706106319558925560181} a^{5} - \frac{72694625785440031555335366}{317310706106319558925560181} a^{4} - \frac{125990284334034442337516437}{317310706106319558925560181} a^{3} + \frac{146247213589083859092992466}{317310706106319558925560181} a^{2} - \frac{86479198422460663671914103}{317310706106319558925560181} a - \frac{6083078722815076251583673}{317310706106319558925560181}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 253215720131 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5000 |
| The 230 conjugacy class representatives for t20n299 are not computed |
| Character table for t20n299 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.725.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{5}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{5}$ | $20$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}$ | $20$ | $20$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $29$ | 29.10.0.1 | $x^{10} + x^{2} - 2 x + 2$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ |
| 29.10.5.2 | $x^{10} - 707281 x^{2} + 225622639$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 331 | Data not computed | ||||||
| 641 | Data not computed | ||||||