Normalized defining polynomial
\( x^{20} - x^{19} - 38 x^{18} + 32 x^{17} + 528 x^{16} - 350 x^{15} - 3494 x^{14} + 1700 x^{13} + 11599 x^{12} - 3821 x^{11} - 18216 x^{10} + 3821 x^{9} + 11599 x^{8} - 1700 x^{7} - 3494 x^{6} + 350 x^{5} + 528 x^{4} - 32 x^{3} - 38 x^{2} + x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(40016504277785918139041483312201654625=3^{4}\cdot 5^{3}\cdot 13^{2}\cdot 37^{3}\cdot 2153^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $75.88$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 13, 37, 2153$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2} a^{11} - \frac{1}{2}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} + \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{8} a^{13} + \frac{1}{8} a^{11} + \frac{1}{4} a^{10} - \frac{1}{4} a^{9} + \frac{1}{4} a^{8} + \frac{1}{4} a^{7} + \frac{1}{4} a^{6} + \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{8} a^{2} + \frac{1}{4} a - \frac{3}{8}$, $\frac{1}{16} a^{14} - \frac{1}{16} a^{13} + \frac{1}{16} a^{12} + \frac{1}{16} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{4} a^{5} + \frac{1}{4} a^{4} - \frac{3}{16} a^{3} - \frac{5}{16} a^{2} + \frac{3}{16} a - \frac{5}{16}$, $\frac{1}{32} a^{15} + \frac{1}{16} a^{12} - \frac{3}{32} a^{11} - \frac{1}{4} a^{10} + \frac{1}{8} a^{9} + \frac{1}{4} a^{8} - \frac{1}{4} a^{7} + \frac{1}{8} a^{6} + \frac{1}{32} a^{4} + \frac{1}{4} a^{3} + \frac{7}{16} a^{2} + \frac{7}{16} a - \frac{5}{32}$, $\frac{1}{192} a^{16} - \frac{1}{192} a^{15} - \frac{1}{48} a^{14} - \frac{1}{96} a^{13} + \frac{7}{192} a^{12} - \frac{11}{64} a^{11} + \frac{1}{16} a^{10} + \frac{1}{48} a^{9} - \frac{1}{2} a^{8} - \frac{1}{48} a^{7} + \frac{1}{16} a^{6} + \frac{11}{64} a^{5} + \frac{7}{192} a^{4} + \frac{1}{96} a^{3} - \frac{1}{48} a^{2} + \frac{1}{192} a + \frac{1}{192}$, $\frac{1}{384} a^{17} - \frac{5}{384} a^{15} - \frac{1}{64} a^{14} + \frac{5}{384} a^{13} - \frac{13}{192} a^{12} - \frac{7}{128} a^{11} + \frac{1}{24} a^{10} - \frac{23}{96} a^{9} - \frac{25}{96} a^{8} + \frac{1}{48} a^{7} - \frac{49}{128} a^{6} + \frac{5}{48} a^{5} + \frac{3}{128} a^{4} - \frac{1}{192} a^{3} - \frac{1}{128} a^{2} + \frac{1}{192} a - \frac{191}{384}$, $\frac{1}{9984} a^{18} + \frac{3}{3328} a^{17} - \frac{25}{9984} a^{16} - \frac{79}{9984} a^{15} - \frac{209}{9984} a^{14} + \frac{107}{9984} a^{13} + \frac{1189}{9984} a^{12} - \frac{1721}{9984} a^{11} + \frac{97}{2496} a^{10} - \frac{85}{208} a^{9} + \frac{449}{2496} a^{8} - \frac{2683}{9984} a^{7} + \frac{2893}{9984} a^{6} - \frac{545}{3328} a^{5} - \frac{2989}{9984} a^{4} - \frac{2029}{9984} a^{3} + \frac{3847}{9984} a^{2} + \frac{4559}{9984} a + \frac{1429}{9984}$, $\frac{1}{19968} a^{19} - \frac{1}{9984} a^{17} + \frac{7}{3328} a^{16} + \frac{43}{9984} a^{15} + \frac{133}{4992} a^{14} - \frac{49}{3328} a^{13} - \frac{1063}{9984} a^{12} - \frac{1595}{19968} a^{11} - \frac{1789}{4992} a^{10} - \frac{355}{4992} a^{9} + \frac{1899}{6656} a^{8} + \frac{1}{6} a^{7} - \frac{193}{416} a^{6} + \frac{95}{768} a^{5} - \frac{203}{832} a^{4} + \frac{119}{4992} a^{3} + \frac{1091}{2496} a^{2} + \frac{1113}{3328} a + \frac{1953}{6656}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3890518189520 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 10240 |
| The 208 conjugacy class representatives for t20n418 are not computed |
| Character table for t20n418 is not computed |
Intermediate fields
| 5.5.4635409.1, 10.10.3975098070496985.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | R | $20$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | $20$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{3}$ | $20$ | $20$ | R | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 3.8.4.2 | $x^{8} - 27 x^{2} + 162$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ | |
| 3.8.0.1 | $x^{8} - x^{3} + 2$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| $5$ | 5.4.3.3 | $x^{4} + 10$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.8.0.1 | $x^{8} + x^{2} - 2 x + 3$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 5.8.0.1 | $x^{8} + x^{2} - 2 x + 3$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| $13$ | 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $37$ | $\Q_{37}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{37}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{37}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{37}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 37.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 37.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 37.4.3.3 | $x^{4} + 74$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 37.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 37.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 2153 | Data not computed | ||||||