Normalized defining polynomial
\( x^{20} - x^{19} - 64 x^{18} + 78 x^{17} + 1609 x^{16} - 2224 x^{15} - 20399 x^{14} + 30774 x^{13} + 139797 x^{12} - 228288 x^{11} - 510719 x^{10} + 929822 x^{9} + 878982 x^{8} - 2003579 x^{7} - 355510 x^{6} + 2013497 x^{5} - 574064 x^{4} - 658628 x^{3} + 441152 x^{2} - 86946 x + 4621 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(396107830343483954099825714111328125=5^{15}\cdot 7^{10}\cdot 11^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $60.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(385=5\cdot 7\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{385}(64,·)$, $\chi_{385}(1,·)$, $\chi_{385}(258,·)$, $\chi_{385}(71,·)$, $\chi_{385}(328,·)$, $\chi_{385}(202,·)$, $\chi_{385}(141,·)$, $\chi_{385}(342,·)$, $\chi_{385}(344,·)$, $\chi_{385}(27,·)$, $\chi_{385}(223,·)$, $\chi_{385}(97,·)$, $\chi_{385}(36,·)$, $\chi_{385}(169,·)$, $\chi_{385}(48,·)$, $\chi_{385}(309,·)$, $\chi_{385}(246,·)$, $\chi_{385}(377,·)$, $\chi_{385}(379,·)$, $\chi_{385}(188,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{53942677380093530752537159240814303273590603649} a^{19} - \frac{5259730474946546127379933827039225916865373465}{53942677380093530752537159240814303273590603649} a^{18} + \frac{11145132623772947388162363676301359717197132902}{53942677380093530752537159240814303273590603649} a^{17} - \frac{22922361421062346412037361246785262927217201364}{53942677380093530752537159240814303273590603649} a^{16} + \frac{4412005012727357638099139401150742484501525621}{53942677380093530752537159240814303273590603649} a^{15} + \frac{3121847717019942009849618280154332002565275550}{53942677380093530752537159240814303273590603649} a^{14} - \frac{14308995707477855056192999017815638251458388096}{53942677380093530752537159240814303273590603649} a^{13} - \frac{5749134105666280461343773570866095449985156842}{53942677380093530752537159240814303273590603649} a^{12} + \frac{9261191274149451525134482598642360994596644709}{53942677380093530752537159240814303273590603649} a^{11} + \frac{4118649099229782718608624118309689025923906558}{53942677380093530752537159240814303273590603649} a^{10} + \frac{11609116358463046297709315738526021579866191812}{53942677380093530752537159240814303273590603649} a^{9} - \frac{16353241027963414430247982026383079347032226834}{53942677380093530752537159240814303273590603649} a^{8} + \frac{5238707322474313765827705602474760148170857231}{53942677380093530752537159240814303273590603649} a^{7} - \frac{3380752620919236394310336076749411489629451390}{53942677380093530752537159240814303273590603649} a^{6} - \frac{9445436405578911077437725402698864591597546670}{53942677380093530752537159240814303273590603649} a^{5} + \frac{15261434775184239042780261082521572088030470041}{53942677380093530752537159240814303273590603649} a^{4} - \frac{19258921857588619237926646487010661761146724836}{53942677380093530752537159240814303273590603649} a^{3} + \frac{5861672644273236303042231410499627177602574973}{53942677380093530752537159240814303273590603649} a^{2} + \frac{9673013380028315421829892544818162991897430731}{53942677380093530752537159240814303273590603649} a - \frac{15035638178156743615732947294686135177313395664}{53942677380093530752537159240814303273590603649}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 249459949124 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 20 |
| The 20 conjugacy class representatives for $C_{20}$ |
| Character table for $C_{20}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.6125.1, \(\Q(\zeta_{11})^+\), 10.10.669871503125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | $20$ | R | R | R | $20$ | $20$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | $20$ | $20$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| $11$ | 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |