Normalized defining polynomial
\( x^{20} - 4 x^{19} - 56 x^{18} + 192 x^{17} + 1265 x^{16} - 3644 x^{15} - 14718 x^{14} + 35964 x^{13} + 94810 x^{12} - 202968 x^{11} - 339336 x^{10} + 669932 x^{9} + 629427 x^{8} - 1245448 x^{7} - 463526 x^{6} + 1143416 x^{5} - 56571 x^{4} - 348424 x^{3} + 106752 x^{2} - 2960 x - 263 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(38251599236941169123840379965550626865152=2^{40}\cdot 17^{13}\cdot 37^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $106.94$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{17} a^{16} - \frac{3}{17} a^{15} - \frac{2}{17} a^{14} + \frac{1}{17} a^{13} - \frac{2}{17} a^{12} + \frac{3}{17} a^{11} - \frac{4}{17} a^{10} + \frac{7}{17} a^{9} + \frac{4}{17} a^{7} + \frac{2}{17} a^{6} - \frac{2}{17} a^{5} + \frac{8}{17} a^{4} - \frac{4}{17} a^{3} + \frac{6}{17} a^{2} + \frac{6}{17} a - \frac{8}{17}$, $\frac{1}{17} a^{17} + \frac{6}{17} a^{15} - \frac{5}{17} a^{14} + \frac{1}{17} a^{13} - \frac{3}{17} a^{12} + \frac{5}{17} a^{11} - \frac{5}{17} a^{10} + \frac{4}{17} a^{9} + \frac{4}{17} a^{8} - \frac{3}{17} a^{7} + \frac{4}{17} a^{6} + \frac{2}{17} a^{5} + \frac{3}{17} a^{4} - \frac{6}{17} a^{3} + \frac{7}{17} a^{2} - \frac{7}{17} a - \frac{7}{17}$, $\frac{1}{2703} a^{18} - \frac{59}{2703} a^{17} + \frac{31}{2703} a^{16} + \frac{388}{901} a^{15} - \frac{445}{901} a^{14} + \frac{1102}{2703} a^{13} - \frac{871}{2703} a^{12} - \frac{1279}{2703} a^{11} - \frac{923}{2703} a^{10} + \frac{283}{2703} a^{9} + \frac{11}{901} a^{8} + \frac{326}{901} a^{7} - \frac{322}{901} a^{6} - \frac{403}{2703} a^{5} + \frac{70}{159} a^{4} - \frac{334}{2703} a^{3} + \frac{233}{901} a^{2} - \frac{56}{2703} a + \frac{77}{2703}$, $\frac{1}{380957951778538167036671442499896565017} a^{19} + \frac{37838049542735380326625615486327562}{380957951778538167036671442499896565017} a^{18} - \frac{7736820093923437479242331786582242458}{380957951778538167036671442499896565017} a^{17} + \frac{9951695523469691500923362230971366511}{380957951778538167036671442499896565017} a^{16} - \frac{33788786828283959776996714620601796582}{126985983926179389012223814166632188339} a^{15} + \frac{101255652548382389318040304782478110187}{380957951778538167036671442499896565017} a^{14} - \frac{3681311867110835963280672479370230672}{7469763760363493471307283186272481667} a^{13} - \frac{100345366571369011831787645434661438552}{380957951778538167036671442499896565017} a^{12} + \frac{30836739245643332635467973971837214498}{126985983926179389012223814166632188339} a^{11} + \frac{146192246573181449372451126229608353546}{380957951778538167036671442499896565017} a^{10} + \frac{10226068163299558609383337717615929535}{29304457829118320541282418653838197309} a^{9} - \frac{7453571291967406669203343546543164691}{126985983926179389012223814166632188339} a^{8} - \frac{63046338280727225967028830465987435416}{126985983926179389012223814166632188339} a^{7} + \frac{175665028974607075893143537175752339837}{380957951778538167036671442499896565017} a^{6} - \frac{117041419383307849309094495930757984779}{380957951778538167036671442499896565017} a^{5} + \frac{6015151633016478377910778908268308940}{380957951778538167036671442499896565017} a^{4} + \frac{110265271991300856978594035721283284755}{380957951778538167036671442499896565017} a^{3} - \frac{167996050693765751553505814949468066566}{380957951778538167036671442499896565017} a^{2} + \frac{1667855646226159139707098429145767583}{7469763760363493471307283186272481667} a - \frac{131037588456153889841336060724993074794}{380957951778538167036671442499896565017}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 110095846393000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2:F_5$ (as 20T19):
| A solvable group of order 80 |
| The 14 conjugacy class representatives for $C_2^2:F_5$ |
| Character table for $C_2^2:F_5$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.4.4352.1, 5.5.6725897.1, 10.10.1482348640816627712.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{10}$ | R | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $17$ | 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.8.6.1 | $x^{8} - 119 x^{4} + 23409$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 17.8.6.1 | $x^{8} - 119 x^{4} + 23409$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $37$ | 37.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 37.8.4.1 | $x^{8} + 5476 x^{4} - 50653 x^{2} + 7496644$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 37.8.4.1 | $x^{8} + 5476 x^{4} - 50653 x^{2} + 7496644$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |