Normalized defining polynomial
\( x^{20} - 3 x^{19} - 45 x^{18} + 109 x^{17} + 819 x^{16} - 1499 x^{15} - 7831 x^{14} + 9770 x^{13} + 42920 x^{12} - 30367 x^{11} - 138737 x^{10} + 32874 x^{9} + 258755 x^{8} + 40097 x^{7} - 251687 x^{6} - 122728 x^{5} + 89047 x^{4} + 79483 x^{3} + 12343 x^{2} - 2541 x - 389 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3774226305410017540250773134765625=5^{10}\cdot 17^{10}\cdot 61^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $47.74$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 17, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{35} a^{16} + \frac{1}{35} a^{15} + \frac{12}{35} a^{14} + \frac{11}{35} a^{13} + \frac{2}{5} a^{12} + \frac{16}{35} a^{11} - \frac{6}{35} a^{10} - \frac{3}{35} a^{9} + \frac{17}{35} a^{8} + \frac{12}{35} a^{6} + \frac{1}{5} a^{5} + \frac{12}{35} a^{4} + \frac{13}{35} a^{3} - \frac{4}{35} a^{2} + \frac{2}{7} a + \frac{16}{35}$, $\frac{1}{35} a^{17} + \frac{11}{35} a^{15} - \frac{1}{35} a^{14} + \frac{3}{35} a^{13} + \frac{2}{35} a^{12} + \frac{13}{35} a^{11} + \frac{3}{35} a^{10} - \frac{3}{7} a^{9} - \frac{17}{35} a^{8} + \frac{12}{35} a^{7} - \frac{1}{7} a^{6} + \frac{1}{7} a^{5} + \frac{1}{35} a^{4} - \frac{17}{35} a^{3} + \frac{2}{5} a^{2} + \frac{6}{35} a - \frac{16}{35}$, $\frac{1}{436345} a^{18} - \frac{5947}{436345} a^{17} + \frac{5256}{436345} a^{16} + \frac{192597}{436345} a^{15} - \frac{27123}{87269} a^{14} + \frac{61311}{436345} a^{13} - \frac{55701}{436345} a^{12} - \frac{124673}{436345} a^{11} - \frac{89716}{436345} a^{10} + \frac{214118}{436345} a^{9} - \frac{181949}{436345} a^{8} - \frac{91844}{436345} a^{7} - \frac{3291}{12467} a^{6} - \frac{175124}{436345} a^{5} - \frac{90899}{436345} a^{4} + \frac{59783}{436345} a^{3} + \frac{24148}{436345} a^{2} + \frac{214642}{436345} a + \frac{146242}{436345}$, $\frac{1}{639455793069085268082653665} a^{19} - \frac{8767046285544693918}{13050118225899699348625585} a^{18} + \frac{2785808047097381409364503}{639455793069085268082653665} a^{17} - \frac{8322564523088895717379929}{639455793069085268082653665} a^{16} + \frac{147424159431424202909571331}{639455793069085268082653665} a^{15} - \frac{135851867258615843148734988}{639455793069085268082653665} a^{14} + \frac{177132561643236192520024929}{639455793069085268082653665} a^{13} + \frac{130159882688797791803843782}{639455793069085268082653665} a^{12} - \frac{168252417179050239217110826}{639455793069085268082653665} a^{11} - \frac{3325787750230484487650906}{18270165516259579088075819} a^{10} - \frac{94451108580101103158498601}{639455793069085268082653665} a^{9} + \frac{58542486054344765547121472}{127891158613817053616530733} a^{8} + \frac{22580875198744033778037044}{639455793069085268082653665} a^{7} + \frac{123948336182220175092505894}{639455793069085268082653665} a^{6} + \frac{217229636751807007793386079}{639455793069085268082653665} a^{5} + \frac{110339515251006896102312933}{639455793069085268082653665} a^{4} - \frac{143854355727594936755757269}{639455793069085268082653665} a^{3} - \frac{15779088047833988192844588}{91350827581297895440379095} a^{2} - \frac{295963765715929519903061981}{639455793069085268082653665} a + \frac{119534383986528043749604142}{639455793069085268082653665}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 22717345132.5 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times D_5$ (as 20T8):
| A solvable group of order 40 |
| The 16 conjugacy class representatives for $C_2^2\times D_5$ |
| Character table for $C_2^2\times D_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{85}) \), \(\Q(\sqrt{5}, \sqrt{17})\), 5.5.26884225.1, 10.10.12286946415460625.1, 10.10.3613807769253125.1, 10.10.61434732077303125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 20 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{10}$ | R | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $17$ | 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $61$ | 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.4.2.1 | $x^{4} + 183 x^{2} + 14884$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 61.4.2.1 | $x^{4} + 183 x^{2} + 14884$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 61.4.2.1 | $x^{4} + 183 x^{2} + 14884$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 61.4.2.1 | $x^{4} + 183 x^{2} + 14884$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |