Normalized defining polynomial
\( x^{20} - 4 x^{19} - 24 x^{18} + 102 x^{17} + 208 x^{16} - 966 x^{15} - 838 x^{14} + 4388 x^{13} + 1798 x^{12} - 10728 x^{11} - 1999 x^{10} + 14786 x^{9} + 692 x^{8} - 11422 x^{7} + 715 x^{6} + 4608 x^{5} - 741 x^{4} - 780 x^{3} + 196 x^{2} + 16 x - 4 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3733366322992474864549675248123904=2^{24}\cdot 37^{6}\cdot 131^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $47.71$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 37, 131$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{14} a^{16} + \frac{1}{7} a^{15} - \frac{1}{14} a^{14} - \frac{1}{7} a^{13} + \frac{5}{14} a^{12} - \frac{2}{7} a^{11} + \frac{3}{14} a^{10} + \frac{1}{7} a^{9} + \frac{5}{14} a^{8} - \frac{3}{7} a^{7} + \frac{2}{7} a^{6} - \frac{1}{7} a^{5} - \frac{3}{7} a^{4} - \frac{5}{14} a^{2} - \frac{1}{7} a - \frac{3}{7}$, $\frac{1}{14} a^{17} - \frac{5}{14} a^{15} - \frac{5}{14} a^{13} - \frac{3}{14} a^{11} - \frac{2}{7} a^{10} + \frac{1}{14} a^{9} - \frac{1}{7} a^{8} + \frac{1}{7} a^{7} + \frac{2}{7} a^{6} - \frac{1}{7} a^{5} - \frac{1}{7} a^{4} - \frac{5}{14} a^{3} - \frac{3}{7} a^{2} - \frac{1}{7} a - \frac{1}{7}$, $\frac{1}{28} a^{18} - \frac{1}{28} a^{17} - \frac{1}{28} a^{16} + \frac{13}{28} a^{15} - \frac{9}{28} a^{14} - \frac{3}{28} a^{13} - \frac{11}{28} a^{12} - \frac{3}{28} a^{11} - \frac{11}{28} a^{10} + \frac{5}{28} a^{9} - \frac{1}{7} a^{8} - \frac{2}{7} a^{7} + \frac{5}{14} a^{6} - \frac{2}{7} a^{5} - \frac{13}{28} a^{4} + \frac{13}{28} a^{3} + \frac{3}{7} a^{2} + \frac{3}{14} a - \frac{2}{7}$, $\frac{1}{146734226963996} a^{19} + \frac{558317154569}{36683556740999} a^{18} + \frac{924925459601}{73367113481998} a^{17} + \frac{1103427557322}{36683556740999} a^{16} - \frac{14444307644248}{36683556740999} a^{15} + \frac{14771650823661}{36683556740999} a^{14} + \frac{34555623220491}{73367113481998} a^{13} - \frac{626669364013}{10481016211714} a^{12} - \frac{16466205555249}{73367113481998} a^{11} + \frac{25939212405409}{73367113481998} a^{10} - \frac{37416918071679}{146734226963996} a^{9} + \frac{4400911869097}{36683556740999} a^{8} + \frac{27705296556865}{73367113481998} a^{7} + \frac{9727445190741}{73367113481998} a^{6} - \frac{57362079942481}{146734226963996} a^{5} + \frac{13401487079455}{36683556740999} a^{4} - \frac{48882155809191}{146734226963996} a^{3} - \frac{34559125086379}{73367113481998} a^{2} - \frac{35486969111339}{73367113481998} a + \frac{9153271786217}{36683556740999}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 88822170779.8 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 720 |
| The 11 conjugacy class representatives for t20n149 |
| Character table for t20n149 |
Intermediate fields
| 10.10.61101279225499648.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 siblings: | 6.6.55632392512.1, 6.6.40637248.1 |
| Degree 10 sibling: | 10.10.61101279225499648.1 |
| Degree 12 siblings: | Deg 12, Deg 12 |
| Degree 15 siblings: | Deg 15, Deg 15 |
| Degree 20 siblings: | Deg 20, 20.20.6996929561265899684619283912699144044544.1 |
| Degree 30 siblings: | data not computed |
| Degree 36 sibling: | data not computed |
| Degree 40 siblings: | data not computed |
| Degree 45 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.6.7 | $x^{4} + 2 x^{3} + 2 x^{2} + 2$ | $4$ | $1$ | $6$ | $A_4$ | $[2, 2]^{3}$ |
| 2.4.6.7 | $x^{4} + 2 x^{3} + 2 x^{2} + 2$ | $4$ | $1$ | $6$ | $A_4$ | $[2, 2]^{3}$ | |
| 2.12.12.11 | $x^{12} - 6 x^{10} - 73 x^{8} + 140 x^{6} + 79 x^{4} - 6 x^{2} + 57$ | $2$ | $6$ | $12$ | $A_4 \times C_2$ | $[2, 2]^{6}$ | |
| $37$ | 37.4.2.1 | $x^{4} + 333 x^{2} + 34225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 37.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 37.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 37.8.4.1 | $x^{8} + 5476 x^{4} - 50653 x^{2} + 7496644$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $131$ | 131.2.0.1 | $x^{2} - x + 14$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 131.2.0.1 | $x^{2} - x + 14$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 131.4.2.1 | $x^{4} + 3537 x^{2} + 3363556$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 131.4.2.1 | $x^{4} + 3537 x^{2} + 3363556$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 131.4.2.1 | $x^{4} + 3537 x^{2} + 3363556$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 131.4.2.1 | $x^{4} + 3537 x^{2} + 3363556$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |