Normalized defining polynomial
\( x^{20} - 44 x^{18} + 779 x^{16} - 7195 x^{14} + 37781 x^{12} - 116321 x^{10} + 211202 x^{8} - 221656 x^{6} + 125920 x^{4} - 32976 x^{2} + 2592 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3607394325588992472373555921682432=2^{25}\cdot 401^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $47.63$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} + \frac{1}{3} a$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{11} + \frac{1}{3} a^{3}$, $\frac{1}{24} a^{12} - \frac{1}{6} a^{10} + \frac{1}{8} a^{8} - \frac{1}{8} a^{6} - \frac{11}{24} a^{4} - \frac{1}{24} a^{2} - \frac{1}{4}$, $\frac{1}{24} a^{13} - \frac{1}{6} a^{11} + \frac{1}{8} a^{9} - \frac{1}{8} a^{7} - \frac{11}{24} a^{5} - \frac{1}{24} a^{3} - \frac{1}{4} a$, $\frac{1}{576} a^{14} - \frac{5}{288} a^{12} + \frac{11}{576} a^{10} - \frac{7}{192} a^{8} + \frac{247}{576} a^{6} + \frac{209}{576} a^{4} - \frac{29}{72} a^{2} - \frac{3}{16}$, $\frac{1}{576} a^{15} - \frac{5}{288} a^{13} + \frac{11}{576} a^{11} - \frac{7}{192} a^{9} + \frac{247}{576} a^{7} + \frac{209}{576} a^{5} - \frac{29}{72} a^{3} - \frac{3}{16} a$, $\frac{1}{4608} a^{16} - \frac{89}{4608} a^{12} + \frac{665}{4608} a^{10} - \frac{1115}{4608} a^{8} - \frac{67}{1536} a^{6} + \frac{641}{2304} a^{4} + \frac{257}{1152} a^{2} - \frac{15}{64}$, $\frac{1}{4608} a^{17} - \frac{89}{4608} a^{13} + \frac{665}{4608} a^{11} + \frac{421}{4608} a^{9} - \frac{67}{1536} a^{7} + \frac{641}{2304} a^{5} + \frac{257}{1152} a^{3} + \frac{19}{192} a$, $\frac{1}{190844928} a^{18} + \frac{317}{10602496} a^{16} + \frac{8807}{190844928} a^{14} - \frac{2379425}{190844928} a^{12} + \frac{3270325}{63614976} a^{10} - \frac{5712797}{63614976} a^{8} + \frac{2612293}{23855616} a^{6} - \frac{9913429}{23855616} a^{4} - \frac{2378161}{11927808} a^{2} - \frac{11899}{1325312}$, $\frac{1}{572534784} a^{19} + \frac{23561}{286267392} a^{17} + \frac{8807}{572534784} a^{15} - \frac{6065449}{572534784} a^{13} - \frac{89877337}{572534784} a^{11} - \frac{63317231}{572534784} a^{9} - \frac{5570975}{17891712} a^{7} + \frac{20579101}{71566848} a^{5} - \frac{7669055}{35783424} a^{3} + \frac{1002793}{3975936} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 16979295917.9 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 40 |
| The 13 conjugacy class representatives for $C_5:D_4$ |
| Character table for $C_5:D_4$ |
Intermediate fields
| \(\Q(\sqrt{401}) \), 4.4.5145632.1, 5.5.160801.1 x5, 10.10.10368641602001.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 20 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }{,}\,{\href{/LocalNumberField/5.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.15.9 | $x^{10} - 6 x^{8} - 24 x^{6} + 80 x^{4} + 336 x^{2} + 33056$ | $2$ | $5$ | $15$ | $C_{10}$ | $[3]^{5}$ |
| 2.10.10.7 | $x^{10} - x^{8} - x^{6} - 3 x^{2} - 7$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ | |
| 401 | Data not computed | ||||||