Normalized defining polynomial
\( x^{20} - 2 x^{19} - 39 x^{18} + 76 x^{17} + 590 x^{16} - 1104 x^{15} - 4374 x^{14} + 7644 x^{13} + 16726 x^{12} - 25808 x^{11} - 33034 x^{10} + 40262 x^{9} + 33501 x^{8} - 26542 x^{7} - 16067 x^{6} + 6736 x^{5} + 3516 x^{4} - 450 x^{3} - 292 x^{2} - 20 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(352517555563337816067682238201856=2^{30}\cdot 3^{10}\cdot 11^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $42.40$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(264=2^{3}\cdot 3\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{264}(1,·)$, $\chi_{264}(197,·)$, $\chi_{264}(161,·)$, $\chi_{264}(17,·)$, $\chi_{264}(37,·)$, $\chi_{264}(149,·)$, $\chi_{264}(25,·)$, $\chi_{264}(101,·)$, $\chi_{264}(157,·)$, $\chi_{264}(133,·)$, $\chi_{264}(97,·)$, $\chi_{264}(229,·)$, $\chi_{264}(65,·)$, $\chi_{264}(41,·)$, $\chi_{264}(173,·)$, $\chi_{264}(29,·)$, $\chi_{264}(49,·)$, $\chi_{264}(181,·)$, $\chi_{264}(233,·)$, $\chi_{264}(169,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{241439363232784676036897281177} a^{19} + \frac{110217171731609918564159947199}{241439363232784676036897281177} a^{18} - \frac{66294939526375959495988363849}{241439363232784676036897281177} a^{17} - \frac{72006901491115173520222714164}{241439363232784676036897281177} a^{16} - \frac{91189850769176465663512669974}{241439363232784676036897281177} a^{15} + \frac{89164734695257262645788370601}{241439363232784676036897281177} a^{14} - \frac{91438449960733721428853497689}{241439363232784676036897281177} a^{13} + \frac{48384837447938497254542806953}{241439363232784676036897281177} a^{12} - \frac{115662238875054095821983913077}{241439363232784676036897281177} a^{11} + \frac{111306754155727704416855344039}{241439363232784676036897281177} a^{10} + \frac{43691275926753962694814358938}{241439363232784676036897281177} a^{9} - \frac{109537213643200824775459829691}{241439363232784676036897281177} a^{8} - \frac{24825391593781383936635729}{241439363232784676036897281177} a^{7} - \frac{73597345008969059922258275912}{241439363232784676036897281177} a^{6} + \frac{120461965046469615062901389947}{241439363232784676036897281177} a^{5} + \frac{119222907306568569736470936323}{241439363232784676036897281177} a^{4} + \frac{71571845191020112188201156373}{241439363232784676036897281177} a^{3} + \frac{99312039309002808894891247596}{241439363232784676036897281177} a^{2} + \frac{47198583902223375093925935100}{241439363232784676036897281177} a + \frac{92869382213135204308298558664}{241439363232784676036897281177}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4400553067.16 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{66}) \), \(\Q(\sqrt{33}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{2}, \sqrt{33})\), \(\Q(\zeta_{11})^+\), 10.10.18775450875101184.1, \(\Q(\zeta_{33})^+\), 10.10.7024111812608.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.15.1 | $x^{10} + 2 x^{8} - 4 x^{6} + 16 x^{2} - 32$ | $2$ | $5$ | $15$ | $C_{10}$ | $[3]^{5}$ |
| 2.10.15.1 | $x^{10} + 2 x^{8} - 4 x^{6} + 16 x^{2} - 32$ | $2$ | $5$ | $15$ | $C_{10}$ | $[3]^{5}$ | |
| 3 | Data not computed | ||||||
| 11 | Data not computed | ||||||