Normalized defining polynomial
\( x^{20} - 10 x^{19} - 16 x^{18} + 413 x^{17} - 424 x^{16} - 6424 x^{15} + 12626 x^{14} + 46828 x^{13} - 123202 x^{12} - 154754 x^{11} + 567584 x^{10} + 126754 x^{9} - 1261035 x^{8} + 390998 x^{7} + 1205290 x^{6} - 745555 x^{5} - 347964 x^{4} + 334262 x^{3} - 34480 x^{2} - 11276 x - 152 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3439976290039196425657587129823518851072=2^{16}\cdot 17^{10}\cdot 53^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $94.80$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{7}$, $\frac{1}{34} a^{14} - \frac{3}{17} a^{13} - \frac{3}{34} a^{12} - \frac{2}{17} a^{11} - \frac{7}{34} a^{10} - \frac{1}{17} a^{9} + \frac{5}{34} a^{8} + \frac{7}{17} a^{7} + \frac{13}{34} a^{6} + \frac{6}{17} a^{5} + \frac{9}{34} a^{4} - \frac{7}{17} a^{3} + \frac{2}{17} a^{2} - \frac{4}{17} a + \frac{2}{17}$, $\frac{1}{34} a^{15} - \frac{5}{34} a^{13} - \frac{5}{34} a^{12} + \frac{3}{34} a^{11} + \frac{7}{34} a^{10} - \frac{7}{34} a^{9} - \frac{7}{34} a^{8} - \frac{5}{34} a^{7} + \frac{5}{34} a^{6} + \frac{13}{34} a^{5} - \frac{11}{34} a^{4} - \frac{6}{17} a^{3} - \frac{1}{34} a^{2} - \frac{5}{17} a - \frac{5}{17}$, $\frac{1}{10812} a^{16} - \frac{14}{2703} a^{15} - \frac{31}{5406} a^{14} - \frac{431}{5406} a^{13} - \frac{185}{1802} a^{12} - \frac{1301}{5406} a^{11} + \frac{17}{159} a^{10} + \frac{275}{5406} a^{9} + \frac{9}{53} a^{8} - \frac{451}{1802} a^{7} + \frac{1111}{5406} a^{6} - \frac{1111}{5406} a^{5} - \frac{385}{10812} a^{4} - \frac{2351}{5406} a^{3} - \frac{1417}{5406} a^{2} + \frac{1229}{2703} a - \frac{767}{2703}$, $\frac{1}{183804} a^{17} - \frac{2}{45951} a^{16} + \frac{505}{45951} a^{15} + \frac{233}{45951} a^{14} + \frac{1998}{15317} a^{13} - \frac{14585}{91902} a^{12} + \frac{11429}{91902} a^{11} + \frac{989}{91902} a^{10} - \frac{2449}{30634} a^{9} + \frac{3170}{15317} a^{8} + \frac{440}{45951} a^{7} - \frac{7567}{91902} a^{6} + \frac{55457}{183804} a^{5} - \frac{27173}{91902} a^{4} + \frac{7529}{91902} a^{3} + \frac{20804}{45951} a^{2} + \frac{7027}{45951} a + \frac{6967}{15317}$, $\frac{1}{457590167220} a^{18} - \frac{8669}{5383413732} a^{17} - \frac{491311}{152530055740} a^{16} + \frac{3316167929}{228795083610} a^{15} + \frac{2291996431}{228795083610} a^{14} + \frac{586682391}{7626502787} a^{13} + \frac{56974812431}{228795083610} a^{12} - \frac{32004336671}{228795083610} a^{11} + \frac{9698362676}{114397541805} a^{10} - \frac{2458217375}{22879508361} a^{9} - \frac{15819213436}{114397541805} a^{8} + \frac{2643675653}{6729267165} a^{7} + \frac{1094677171}{152530055740} a^{6} - \frac{6064417189}{91518033444} a^{5} + \frac{217384275749}{457590167220} a^{4} + \frac{579221173}{15253005574} a^{3} + \frac{26981509313}{76265027870} a^{2} - \frac{21799242812}{114397541805} a - \frac{34418729554}{114397541805}$, $\frac{1}{105230637985081740} a^{19} - \frac{27841}{35076879328360580} a^{18} - \frac{90748594069}{52615318992540870} a^{17} - \frac{651626679497}{26307659496270435} a^{16} - \frac{723512644594351}{52615318992540870} a^{15} + \frac{3417540442007}{1031672921422370} a^{14} + \frac{3918193929534257}{17538439664180290} a^{13} + \frac{6187868730149873}{26307659496270435} a^{12} - \frac{64510698667288}{5261531899254087} a^{11} + \frac{176637400557779}{1031672921422370} a^{10} + \frac{33621007182199}{26307659496270435} a^{9} + \frac{402321141575924}{26307659496270435} a^{8} - \frac{12700964767773473}{35076879328360580} a^{7} - \frac{32638908782946289}{105230637985081740} a^{6} - \frac{7908924159800171}{17538439664180290} a^{5} - \frac{21329192433552421}{52615318992540870} a^{4} + \frac{5513814564725279}{52615318992540870} a^{3} - \frac{1932397152129087}{17538439664180290} a^{2} + \frac{9313528678639952}{26307659496270435} a - \frac{2094561465722368}{26307659496270435}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 301584210044000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2:F_5$ (as 20T19):
| A solvable group of order 80 |
| The 14 conjugacy class representatives for $C_2^2:F_5$ |
| Character table for $C_2^2:F_5$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.15317.1, 5.5.2382032.1, 10.10.8056377164681869568.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ | |
| 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ | |
| 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ | |
| 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ | |
| $17$ | 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $53$ | 53.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 53.2.1.2 | $x^{2} + 106$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 53.8.6.1 | $x^{8} - 1643 x^{4} + 1755625$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 53.8.6.1 | $x^{8} - 1643 x^{4} + 1755625$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |